Purpose: The aim of this study was to determine the efficiency of the application of living high-training low (LHTL) on cardiac function and skeletal muscle oxygenation during submaximal exercises compared with that of living low-training low (LLTL) in athletes.
Methods: Male middle- and long-distance runners (n = 20) were randomly assigned into the LLTL group (n = 10, living at 1000-m altitude and training at 700-1330-m altitude) and the LHTL group (n = 10, living at simulated 3000-m altitude and training at 700-1330-m altitude). Their cardiac function and skeletal muscle oxygenation during submaximal exercises at sea level before and after training at each environmental condition were evaluated.
Results: There was a significant interaction only in the stroke volume (SV); however, the heart rate (HR), end-diastolic volume (EDV), and end-systolic volume (ESV) showed significant main effects within time; HR and SV significantly increased during training in the LHTL group compared with those in the LLTL group. EDV also significantly increased during training in both groups; however, the LHTL group had a higher increase than the LLTL group. ESV significantly increased during training in the LLTL group. There was no significant difference in the ejection fraction and cardiac output. The skeletal muscle oxygen profiles had no significant differences but improved in the LHTL group compared with those in the LLTL group.
Conclusion: LHTL can yield favorable effects on cardiac function by improving the HR, SV, EDV, and ESV during submaximal exercises compared with LLTL in athletes.
{"title":"Application of \"living high-training low\" enhances cardiac function and skeletal muscle oxygenation during submaximal exercises in athletes.","authors":"Hun-Young Park, Sang-Seok Nam","doi":"10.20463/jenb.2017.0064","DOIUrl":"10.20463/jenb.2017.0064","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to determine the efficiency of the application of living high-training low (LHTL) on cardiac function and skeletal muscle oxygenation during submaximal exercises compared with that of living low-training low (LLTL) in athletes.</p><p><strong>Methods: </strong>Male middle- and long-distance runners (n = 20) were randomly assigned into the LLTL group (n = 10, living at 1000-m altitude and training at 700-1330-m altitude) and the LHTL group (n = 10, living at simulated 3000-m altitude and training at 700-1330-m altitude). Their cardiac function and skeletal muscle oxygenation during submaximal exercises at sea level before and after training at each environmental condition were evaluated.</p><p><strong>Results: </strong>There was a significant interaction only in the stroke volume (SV); however, the heart rate (HR), end-diastolic volume (EDV), and end-systolic volume (ESV) showed significant main effects within time; HR and SV significantly increased during training in the LHTL group compared with those in the LLTL group. EDV also significantly increased during training in both groups; however, the LHTL group had a higher increase than the LLTL group. ESV significantly increased during training in the LLTL group. There was no significant difference in the ejection fraction and cardiac output. The skeletal muscle oxygen profiles had no significant differences but improved in the LHTL group compared with those in the LLTL group.</p><p><strong>Conclusion: </strong>LHTL can yield favorable effects on cardiac function by improving the HR, SV, EDV, and ESV during submaximal exercises compared with LLTL in athletes.</p>","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"21 1","pages":"13-20"},"PeriodicalIF":0.0,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35172890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Alzheimer's disease (AD) is classified as a progressive neurological disorder, which not only causes cognitive impairment but also abnormal weight loss, with a reduction of muscle mass related to the accumulation of amyloid-β (Aβ) in skeletal muscle. Thus, we investigated the effect of treadmill exercise on Aβ deposition, and p-AMPK, p-ACC, BDNF, and GLUT4 protein levels the regulation of muscle energy metabolism using an AD mouse.
Methods: At 13 months of age, NSE/PS2m mice (Tg) and control mice (non-Tg) were assigned to non-exercise control (Con) and exercise groups (Exe). The four groups were as follows: non-Tg Con, non-Tg Exe, Tg Con, and Tg Exe. The treadmill exercise was carried out for 12 weeks.
Results: The highest levels of Aβ expression in the skeletal muscle were in the Tg Con group. Aβ expression was significantly reduced in the Tg Exe group, compared to the Tg Con group. Congo red staining showed remarkable diffuse red amyloid deposition in the Tg Con group, while Aβ-deposition in the skeletal was reduced with muscle exercise in the Tg Exe group. Exercise also increased AMPK and ACC phosphorylation and BDNF and GLUT4 expression in the skeletal muscle of non-Tg and Tg mice.
Conclusion: Treadmill exercise reduces Aβ-deposition in the skeletal muscle and improves the regulation of energy metabolism. Thus, collectively, these results suggest that exercise could be a positive therapeutic strategy for skeletal muscle dysfunction in AD patients.
{"title":"Treadmill exercise ameliorates the regulation of energy metabolism in skeletal muscle of NSE/PS2mtransgenic mice with Alzheimer's disease.","authors":"Jang-Soo Yook, Joon-Yong Cho","doi":"10.20463/jenb.2017.0046","DOIUrl":"https://doi.org/10.20463/jenb.2017.0046","url":null,"abstract":"<p><strong>Purpose: </strong>Alzheimer's disease (AD) is classified as a progressive neurological disorder, which not only causes cognitive impairment but also abnormal weight loss, with a reduction of muscle mass related to the accumulation of amyloid-β (Aβ) in skeletal muscle. Thus, we investigated the effect of treadmill exercise on Aβ deposition, and p-AMPK, p-ACC, BDNF, and GLUT4 protein levels the regulation of muscle energy metabolism using an AD mouse.</p><p><strong>Methods: </strong>At 13 months of age, NSE/PS2m mice (Tg) and control mice (non-Tg) were assigned to non-exercise control (Con) and exercise groups (Exe). The four groups were as follows: non-Tg Con, non-Tg Exe, Tg Con, and Tg Exe. The treadmill exercise was carried out for 12 weeks.</p><p><strong>Results: </strong>The highest levels of Aβ expression in the skeletal muscle were in the Tg Con group. Aβ expression was significantly reduced in the Tg Exe group, compared to the Tg Con group. Congo red staining showed remarkable diffuse red amyloid deposition in the Tg Con group, while Aβ-deposition in the skeletal was reduced with muscle exercise in the Tg Exe group. Exercise also increased AMPK and ACC phosphorylation and BDNF and GLUT4 expression in the skeletal muscle of non-Tg and Tg mice.</p><p><strong>Conclusion: </strong>Treadmill exercise reduces Aβ-deposition in the skeletal muscle and improves the regulation of energy metabolism. Thus, collectively, these results suggest that exercise could be a positive therapeutic strategy for skeletal muscle dysfunction in AD patients.</p>","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"21 1","pages":"40-47"},"PeriodicalIF":0.0,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.20463/jenb.2017.0046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35173848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Jaeumganghwa-Tang (JGT), a traditional herbal formula composed of 12 medicinal herbs, is used for the treatment of age-related diseases. In the present study, we investigated the effects of JGT on muscle mass and function in aged mice.
Methods: Young (5-month-old) and old (19-month-old) male C57BL/6 mice were divided into two groups each; one group received JGT (75 mg/d) and the other group received the vehicle for 6 weeks. At the end of the experimental period, muscle strength was examined using the wire hang test, and the tibialis anterior and gastrocnemius muscles were weighed. Muscle samples were further used for histological analysis to assess muscle damage, and the expression of transforming growth factor-beta was investigated via western blotting and immunohistochemistry.
Results: Our results showed that treatment of old mice with JGT improved muscle strength, increased skeletal muscle mass, alleviated muscle damage, and suppressed intramuscular expression of transforming growth factor-beta.
Conclusion: In conclusion, JGT has beneficial effects on age-related loss of muscle mass and function. Thus, it might serve as a potential therapeutic agent for sarcopenia.
{"title":"Jaeumganghwa-Tang, a traditional herbal formula, improves muscle function and attenuates muscle loss in aged mice.","authors":"Yun Mi Lee, Ohn Soon Kim","doi":"10.20463/jenb.2017.0059","DOIUrl":"10.20463/jenb.2017.0059","url":null,"abstract":"<p><strong>Purpose: </strong>Jaeumganghwa-Tang (JGT), a traditional herbal formula composed of 12 medicinal herbs, is used for the treatment of age-related diseases. In the present study, we investigated the effects of JGT on muscle mass and function in aged mice.</p><p><strong>Methods: </strong>Young (5-month-old) and old (19-month-old) male C57BL/6 mice were divided into two groups each; one group received JGT (75 mg/d) and the other group received the vehicle for 6 weeks. At the end of the experimental period, muscle strength was examined using the wire hang test, and the tibialis anterior and gastrocnemius muscles were weighed. Muscle samples were further used for histological analysis to assess muscle damage, and the expression of transforming growth factor-beta was investigated via western blotting and immunohistochemistry.</p><p><strong>Results: </strong>Our results showed that treatment of old mice with JGT improved muscle strength, increased skeletal muscle mass, alleviated muscle damage, and suppressed intramuscular expression of transforming growth factor-beta.</p><p><strong>Conclusion: </strong>In conclusion, JGT has beneficial effects on age-related loss of muscle mass and function. Thus, it might serve as a potential therapeutic agent for sarcopenia.</p>","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"21 1","pages":"48-53"},"PeriodicalIF":0.0,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35173849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Carriker, Roger A. Vaughan, Trisha A. VanDusseldorp, Kelly E. Johnson, N. Beltz, J. J. McCormick, N. Cole, A. Gibson
[Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.
{"title":"Nitrate-containing beetroot juice reduces oxygen consumption during submaximal exercise in low but not high aerobically fit male runners","authors":"C. Carriker, Roger A. Vaughan, Trisha A. VanDusseldorp, Kelly E. Johnson, N. Beltz, J. J. McCormick, N. Cole, A. Gibson","doi":"10.20463/jenb.2016.0029","DOIUrl":"https://doi.org/10.20463/jenb.2016.0029","url":null,"abstract":"[Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"6 1","pages":"27 - 34"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83420870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junghyun Kim, Chan-Sik Kim, Y. S. Kim, Ik-Soo Lee, J. Kim
[Purpose] Advanced glycation end products (AGEs) have been implicated in the pathogenesis of diabetes and other age-related diseases. AGE inhibitors or breakers, such as aminoguanidine and alagebrium, have been proposed as therapeutic agents for AGE-related disorders. Jakyakgamcho-tang (JGT) is a well-known traditional herbal formula, which consists of the radix of Paeonia lactiflora Pallas (PR) and the radix and rhizome of Glycyrrhiza uralensis Fisch (GR). The purpose of this study was to evaluate the inhibitory and breaking activities of JGT, PR, and GR against AGEs. [Methods] JGT, PR, and GR extracts were prepared in hot water. We performed in vitro assays to evaluate their inhibitory activity against glycation of bovine serum albumin (BSA) by high glucose and their ability to break the already formed AGEs. [Results] In the in vitro AGE formation assay, JGT and PR dose-dependently inhibited AGE-BSA formation (half-maximal inhibitory concentration, IC50, = 41.41 ± 0.36 and 6.84 ± 0.09 μg/mL, respectively). In the breakdown assay of the preformed AGE-BSA-collagen complexes, JGT and PR exhibited potent breaking activities (IC50 = 6.72 ± 1.86 and 7.45 ± 0.47 μg/mL, respectively). However, GR showed a weaker inhibitory activity and no breaking activity against AGEs. [Conclusion] This study suggests that JGT and PR could be valuable drug candidates for treatment of AGE-related diseases by reducing AGE burden.
{"title":"Jakyakgamcho-tang and Its major component, paeonia lactiflora, exhibit potent anti-glycation properties","authors":"Junghyun Kim, Chan-Sik Kim, Y. S. Kim, Ik-Soo Lee, J. Kim","doi":"10.20463/jenb.2016.0049","DOIUrl":"https://doi.org/10.20463/jenb.2016.0049","url":null,"abstract":"[Purpose] Advanced glycation end products (AGEs) have been implicated in the pathogenesis of diabetes and other age-related diseases. AGE inhibitors or breakers, such as aminoguanidine and alagebrium, have been proposed as therapeutic agents for AGE-related disorders. Jakyakgamcho-tang (JGT) is a well-known traditional herbal formula, which consists of the radix of Paeonia lactiflora Pallas (PR) and the radix and rhizome of Glycyrrhiza uralensis Fisch (GR). The purpose of this study was to evaluate the inhibitory and breaking activities of JGT, PR, and GR against AGEs. [Methods] JGT, PR, and GR extracts were prepared in hot water. We performed in vitro assays to evaluate their inhibitory activity against glycation of bovine serum albumin (BSA) by high glucose and their ability to break the already formed AGEs. [Results] In the in vitro AGE formation assay, JGT and PR dose-dependently inhibited AGE-BSA formation (half-maximal inhibitory concentration, IC50, = 41.41 ± 0.36 and 6.84 ± 0.09 μg/mL, respectively). In the breakdown assay of the preformed AGE-BSA-collagen complexes, JGT and PR exhibited potent breaking activities (IC50 = 6.72 ± 1.86 and 7.45 ± 0.47 μg/mL, respectively). However, GR showed a weaker inhibitory activity and no breaking activity against AGEs. [Conclusion] This study suggests that JGT and PR could be valuable drug candidates for treatment of AGE-related diseases by reducing AGE burden.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"41 1","pages":"60 - 64"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88716357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[Purpose] We investigated the effects of endurance training on the expression of long-chain fatty acid transport proteins in the skeletal muscle and whole-body fat oxidation during endurance exercise. [Methods] Seven-week-old male ICR mice (n = 12) were divided into 2 groups, namely, Sed (sedentary; non-trained) and Tr (endurance-trained) groups. The Tr group was adapted to treadmill training at a fixed intensity (15 m/min, 8° slope) for 3 days. Next, the exercise intensity was increased while maintaining the 8° slope. In the last week of training, the exercise intensity was set at 25 m/min for 50 min (about 70–75% maximal oxygen uptake for 4 weeks). After the protocol ended, the mice were sacrificed, and tissues were collected for western blot analysis. [Results] Four weeks of endurance training resulted in a significant increase in the protein levels of FAT/CD36 and CPTІ. The FAT/ CD36 protein level in the Tr group was about 1.3-fold greater than that in the Sed group (p < 0.01). Furthermore, the increased CPTІ indicated higher activity (19% upregulation) in the Tr group compared to the Sed group (p < 0.05). The FAT/CD36 protein level and the estimated whole-body fat oxidation rate during 1-h exercise were found to be significantly correlated (r = 0.765, p < 0.01). [Conclusion] We suggest that the increase in FAT/CD36 protein in skeletal muscle by endurance training might be positively associated with whole-body fat oxidation, which might enhance endurance exercise capacity.
{"title":"Relationship between FAT/CD36 protein in skeletal muscle and whole-body fat oxidation in endurance-trained mice","authors":"Jisu Kim, K. Lim","doi":"10.20463/jenb.2016.0057","DOIUrl":"https://doi.org/10.20463/jenb.2016.0057","url":null,"abstract":"[Purpose] We investigated the effects of endurance training on the expression of long-chain fatty acid transport proteins in the skeletal muscle and whole-body fat oxidation during endurance exercise. [Methods] Seven-week-old male ICR mice (n = 12) were divided into 2 groups, namely, Sed (sedentary; non-trained) and Tr (endurance-trained) groups. The Tr group was adapted to treadmill training at a fixed intensity (15 m/min, 8° slope) for 3 days. Next, the exercise intensity was increased while maintaining the 8° slope. In the last week of training, the exercise intensity was set at 25 m/min for 50 min (about 70–75% maximal oxygen uptake for 4 weeks). After the protocol ended, the mice were sacrificed, and tissues were collected for western blot analysis. [Results] Four weeks of endurance training resulted in a significant increase in the protein levels of FAT/CD36 and CPTІ. The FAT/ CD36 protein level in the Tr group was about 1.3-fold greater than that in the Sed group (p < 0.01). Furthermore, the increased CPTІ indicated higher activity (19% upregulation) in the Tr group compared to the Sed group (p < 0.05). The FAT/CD36 protein level and the estimated whole-body fat oxidation rate during 1-h exercise were found to be significantly correlated (r = 0.765, p < 0.01). [Conclusion] We suggest that the increase in FAT/CD36 protein in skeletal muscle by endurance training might be positively associated with whole-body fat oxidation, which might enhance endurance exercise capacity.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"155 1","pages":"48 - 52"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77296051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[Purpose] The purpose of this review is to discuss current views regarding the acute effects of phytochemicals, exercise, and exercise plus phytochemicals on fatty acid oxidation. [Methods] Data acquired from human and animal studies were comprehensively assessed to determine the single and combined effects of phytochemicals and exercise on fatty acid oxidation. In addition, underlying mechanisms associated with those conditions that may contribute to the regulation of fat metabolism are discussed. [Results] Although not all phytochemicals are effective at increasing fatty acid oxidation, some significantly improve the rate of fatty acid oxidation at rest. In addition, dietary supplementation of p-synephrine, catechins, or anthocyanins in combination with moderately intense exercise has the additive effect of increasing fatty acid oxidation, but not total energy expenditure during exercise. [Conclusion] The data reported from current reviewed studies suggest positive outcomes regarding facilitation of fatty acid oxidation from the combined effects of certain phytochemicals with exercise. Those data provide new insight for developing a strategy to boost fat loss and control weight in obese patients.
{"title":"Combined Effects of Phytochemicals and Exercise on Fatty Acid Oxidation","authors":"Jong-Hee Kim, Y. Park","doi":"10.20463/jenb.2016.0053","DOIUrl":"https://doi.org/10.20463/jenb.2016.0053","url":null,"abstract":"[Purpose] The purpose of this review is to discuss current views regarding the acute effects of phytochemicals, exercise, and exercise plus phytochemicals on fatty acid oxidation. [Methods] Data acquired from human and animal studies were comprehensively assessed to determine the single and combined effects of phytochemicals and exercise on fatty acid oxidation. In addition, underlying mechanisms associated with those conditions that may contribute to the regulation of fat metabolism are discussed. [Results] Although not all phytochemicals are effective at increasing fatty acid oxidation, some significantly improve the rate of fatty acid oxidation at rest. In addition, dietary supplementation of p-synephrine, catechins, or anthocyanins in combination with moderately intense exercise has the additive effect of increasing fatty acid oxidation, but not total energy expenditure during exercise. [Conclusion] The data reported from current reviewed studies suggest positive outcomes regarding facilitation of fatty acid oxidation from the combined effects of certain phytochemicals with exercise. Those data provide new insight for developing a strategy to boost fat loss and control weight in obese patients.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"111 1","pages":"20 - 26"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77871444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[Purpose] The purpose of our study was to determine the effectiveness of 4 weeks fixed and mixed intermittent hypoxic training (IHT) and its difference from exercise training at sea-level on exercise load, respiratory metabolic and acid-base response of capillary blood during 80% maximal heart rate (HRmax) bicycle exercise in male elite Taekwondo players. [Methods] Male elite Taekwondo players (n = 25 out of 33) were randomly assigned to training at sea-level (n = 8, control group), training at 16.5%O2 (2000 m) simulated hypoxic condition (n = 9, fixed IHT group), and training at 14.5%O2 (3000 m) up to 2 weeks and 16.5%O2 (2000 m) simulated hypoxic condition (n = 8, mixed IHT group) for 3 weeks. We compared their average exercise load, respiratory metabolic, and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise before and after 4 weeks training. [Results] Fixed and mixed IHT groups showed positive improvement in respiratory metabolic and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise after 4 weeks training. However, all dependent variables showed no significant difference between fixed IHT and mix IHT. [Conclusion] Results suggested that mixed and fixed IHT is effective in improving respiratory metabolic and acid-base response of capillary blood in male elite Taekwondo players. Thus, IHT could be a novel and effective method for improving exercise performance through respiratory metabolic and acid-base response.
{"title":"The effect of 4 weeks fixed and mixed intermittent hypoxic training (IHT) on respiratory metabolic and acid-base response of capillary blood during submaximal bicycle exercise in male elite taekwondo players","authors":"Hun-Young Park, Sub Sunoo, Sang-Seok Nam","doi":"10.20463/jenb.2016.0035","DOIUrl":"https://doi.org/10.20463/jenb.2016.0035","url":null,"abstract":"[Purpose] The purpose of our study was to determine the effectiveness of 4 weeks fixed and mixed intermittent hypoxic training (IHT) and its difference from exercise training at sea-level on exercise load, respiratory metabolic and acid-base response of capillary blood during 80% maximal heart rate (HRmax) bicycle exercise in male elite Taekwondo players. [Methods] Male elite Taekwondo players (n = 25 out of 33) were randomly assigned to training at sea-level (n = 8, control group), training at 16.5%O2 (2000 m) simulated hypoxic condition (n = 9, fixed IHT group), and training at 14.5%O2 (3000 m) up to 2 weeks and 16.5%O2 (2000 m) simulated hypoxic condition (n = 8, mixed IHT group) for 3 weeks. We compared their average exercise load, respiratory metabolic, and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise before and after 4 weeks training. [Results] Fixed and mixed IHT groups showed positive improvement in respiratory metabolic and acid-base response of the capillary blood during 80% HRmax submaximal bicycle exercise after 4 weeks training. However, all dependent variables showed no significant difference between fixed IHT and mix IHT. [Conclusion] Results suggested that mixed and fixed IHT is effective in improving respiratory metabolic and acid-base response of capillary blood in male elite Taekwondo players. Thus, IHT could be a novel and effective method for improving exercise performance through respiratory metabolic and acid-base response.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"1 1","pages":"35 - 43"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87793493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[Purpose] This systematic review was performed to summarize clinical trials assessing the effect of Red Ginseng (RG) supplementation on exercise performance and fatigue recovery. [Methods] Two English databases (PUBMED, MEDLINE) and two Korean databases (KISS, RISS) were used as systematic searching engines. We included only articles written in the English and Korean languages. Clinical trials, which evaluated exercise performance and recovery variables with RG supplementation, were included in this review. The methodological quality of all studies was assessed using the Cochrane Risk of Bias tool. Analysis was conducted with Comprehensive Meta-Analysis Version 3. [Results] In total, 135 potentially relevant studies were identified, and 14 studies were included. Overall, the aerobic capacity (VO2max, heart rate, time to exhaustion, shuttle run, and anaerobic threshold) exhibited no improvement with RG supplementation. In anaerobic capacity (peak power, mean power, and 30 m dash run), no significant improvements with RG supplementation was described in most of the studies. The antioxidant function predominantly measured by levels of superoxide dismutase (SOD) and malondialdehyde (MDA) showed mixed results. Red Ginseng’s effects on fatigue recovery were evaluated using lactate as a main outcome. Two studies observed significant effects while other 5 studies showed no significant effects. [Conclusion] The clinical effects of RG have been assessed in various conditions. Although the number of studies presented in this review is small and results of studies are mixed, it is hypothesized that this review article may provide useful guideline to design and conduct future studies investigating efficacy of RG supplementation on exercise performance and fatigue recovery in human trials.
【目的】对红参(RG)补充剂对运动表现和疲劳恢复影响的临床试验进行系统综述。[方法]采用两个英文数据库(PUBMED、MEDLINE)和两个韩文数据库(KISS、RISS)作为系统检索引擎。我们只收录了用英语和韩语写的文章。临床试验评估了补充RG后的运动表现和恢复变量。使用Cochrane偏倚风险工具评估所有研究的方法学质量。采用综合Meta-Analysis Version 3进行分析。【结果】共发现135项可能相关的研究,纳入14项研究。总的来说,有氧能力(最大摄氧量、心率、疲劳时间、穿梭跑和无氧阈值)在补充RG后没有得到改善。在无氧能力(峰值功率、平均功率和30米短跑)方面,大多数研究都没有描述补充RG的显著改善。抗氧化功能主要由超氧化物歧化酶(SOD)和丙二醛(MDA)水平测定,结果好坏参半。以乳酸为主要指标,评价红参对疲劳恢复的影响。两项研究观察到显著效果,其他5项研究没有显著效果。【结论】RG在不同情况下的临床疗效得到了评价。虽然这篇综述中提出的研究数量很少,研究结果也很复杂,但我们假设这篇综述文章可以为设计和开展未来的研究提供有用的指导,研究RG补充对人体试验中运动表现和疲劳恢复的功效。
{"title":"Red Ginseng as an Ergogenic Aid: A Systematic Review of Clinical Trials","authors":"N. Lee, H. Jung, Sukho Lee","doi":"10.20463/jenb.2016.0034","DOIUrl":"https://doi.org/10.20463/jenb.2016.0034","url":null,"abstract":"[Purpose] This systematic review was performed to summarize clinical trials assessing the effect of Red Ginseng (RG) supplementation on exercise performance and fatigue recovery. [Methods] Two English databases (PUBMED, MEDLINE) and two Korean databases (KISS, RISS) were used as systematic searching engines. We included only articles written in the English and Korean languages. Clinical trials, which evaluated exercise performance and recovery variables with RG supplementation, were included in this review. The methodological quality of all studies was assessed using the Cochrane Risk of Bias tool. Analysis was conducted with Comprehensive Meta-Analysis Version 3. [Results] In total, 135 potentially relevant studies were identified, and 14 studies were included. Overall, the aerobic capacity (VO2max, heart rate, time to exhaustion, shuttle run, and anaerobic threshold) exhibited no improvement with RG supplementation. In anaerobic capacity (peak power, mean power, and 30 m dash run), no significant improvements with RG supplementation was described in most of the studies. The antioxidant function predominantly measured by levels of superoxide dismutase (SOD) and malondialdehyde (MDA) showed mixed results. Red Ginseng’s effects on fatigue recovery were evaluated using lactate as a main outcome. Two studies observed significant effects while other 5 studies showed no significant effects. [Conclusion] The clinical effects of RG have been assessed in various conditions. Although the number of studies presented in this review is small and results of studies are mixed, it is hypothesized that this review article may provide useful guideline to design and conduct future studies investigating efficacy of RG supplementation on exercise performance and fatigue recovery in human trials.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"94 1","pages":"13 - 19"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76861301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Naderi, E. P. de Oliveira, T. Ziegenfuss, M. Willems
[Purpose] The aim of the present narrative review was to consider the evidence on the timing, optimal dose and intake duration of the main dietary supplements in sports nutrition, i.e. β-alanine, nitrate, caffeine, creatine, sodium bicarbonate, carbohydrate and protein. [Methods] This review article focuses on timing, optimal dose and intake duration of main dietary supplements in sports nutrition. [Results] This paper reviewed the evidence to determine the optimal time, efficacy doses and intake duration for sports supplements verified by scientific evidence that report a performance enhancing effect in both situation of laboratory and training settings. [Conclusion] Consumption of the supplements are usually suggested into 5 specific times, such as pre-exercise (nitrate, caffeine, sodium bicarbonate, carbohydrate and protein), during exercise (carbohydrate), post-exercise (creatine, carbohydrate, protein), meal time (β-alanine, creatine, sodium bicarbonate, nitrate, carbohydrate and protein), and before sleep (protein). In addition, the recommended dosing protocol for the supplements nitrate and β-alanine are fixed amounts irrespective of body weight, while dosing protocol for sodium bicarbonate, caffeine and creatine supplements are related to corrected body weight (mg/kg bw). Also, intake duration is suggested for creatine and β-alanine, being effective in chronic daily time < 2 weeks while caffeine, sodium bicarbonate are effective in acute daily time (1-3 hours). Plus, ingestion of nitrate supplement is required in both chronic daily time < 28 days and acute daily time (2- 2.5 h) prior exercise.
{"title":"Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition","authors":"A. Naderi, E. P. de Oliveira, T. Ziegenfuss, M. Willems","doi":"10.20463/jenb.2016.0031","DOIUrl":"https://doi.org/10.20463/jenb.2016.0031","url":null,"abstract":"[Purpose] The aim of the present narrative review was to consider the evidence on the timing, optimal dose and intake duration of the main dietary supplements in sports nutrition, i.e. β-alanine, nitrate, caffeine, creatine, sodium bicarbonate, carbohydrate and protein. [Methods] This review article focuses on timing, optimal dose and intake duration of main dietary supplements in sports nutrition. [Results] This paper reviewed the evidence to determine the optimal time, efficacy doses and intake duration for sports supplements verified by scientific evidence that report a performance enhancing effect in both situation of laboratory and training settings. [Conclusion] Consumption of the supplements are usually suggested into 5 specific times, such as pre-exercise (nitrate, caffeine, sodium bicarbonate, carbohydrate and protein), during exercise (carbohydrate), post-exercise (creatine, carbohydrate, protein), meal time (β-alanine, creatine, sodium bicarbonate, nitrate, carbohydrate and protein), and before sleep (protein). In addition, the recommended dosing protocol for the supplements nitrate and β-alanine are fixed amounts irrespective of body weight, while dosing protocol for sodium bicarbonate, caffeine and creatine supplements are related to corrected body weight (mg/kg bw). Also, intake duration is suggested for creatine and β-alanine, being effective in chronic daily time < 2 weeks while caffeine, sodium bicarbonate are effective in acute daily time (1-3 hours). Plus, ingestion of nitrate supplement is required in both chronic daily time < 28 days and acute daily time (2- 2.5 h) prior exercise.","PeriodicalId":15795,"journal":{"name":"Journal of Exercise Nutrition & Biochemistry","volume":"71 1","pages":"1 - 12"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91335170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}