首页 > 最新文献

SEG Technical Program Expanded Abstracts 2018最新文献

英文 中文
Distributed acoustic sensing (DAS) field trials for near-surface geotechnical properties, earthquake seismology, and mine monitoring 分布式声传感(DAS)近地表岩土特性、地震地震学和矿山监测的现场试验
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997833.1
Herbert Wang, D. Fratta, N. Lord, Xiangfang Zeng, T. Coleman
{"title":"Distributed acoustic sensing (DAS) field trials for near-surface geotechnical properties, earthquake seismology, and mine monitoring","authors":"Herbert Wang, D. Fratta, N. Lord, Xiangfang Zeng, T. Coleman","doi":"10.1190/SEGAM2018-2997833.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997833.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128437595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
2D-seismic random-noise attenuation by self-pace nonnegative dictionary learning 基于自步进非负字典学习的二维地震随机噪声衰减
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997442.1
Yang Yang, Jinghuai Gao, Guowei Zhang, Xiangxiang Zhu
{"title":"2D-seismic random-noise attenuation by self-pace nonnegative dictionary learning","authors":"Yang Yang, Jinghuai Gao, Guowei Zhang, Xiangxiang Zhu","doi":"10.1190/SEGAM2018-2997442.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997442.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128984406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A time-domain electromagnetic survey of Wainui Valley, Banks Peninsula: Equivalence, sensitivity, local geological constraints, and groundwater resource implications 班克斯半岛瓦努伊河谷的时域电磁测量:等效性、敏感性、局部地质约束和地下水资源影响
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2965139.1
D. Nobes
{"title":"A time-domain electromagnetic survey of Wainui Valley, Banks Peninsula: Equivalence, sensitivity, local geological constraints, and groundwater resource implications","authors":"D. Nobes","doi":"10.1190/SEGAM2018-2965139.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2965139.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124573000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Velocity-independent Marchenko method in time- and depth-imaging domains 时间和深度成像域的速度无关马尔琴科方法
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2992237.1
Y. Sripanich, I. Vasconcelos, K. Wapenaar, J. Trampert
The Marchenko method represents a constructive technique to obtain Green’s functions between the acquisition surface and any arbitrary point in the medium. The process generally involves solving an inversion starting with a direct-wave Green’s function from the desired subsurface position, which is typically obtained using an approximate velocity model. In this study, we first propose to formulate the Marchenko method in the time-imaging domain. We recognize that the traveltime of the direct-wave Green’s function is related to the Cheop’s traveltime pyramid commonly used in time-domain processing and can be readily obtained from the local slopes of the common-midpoint (CMP) gathers. This observation allows us to substitute the need for a prior velocity model with the data-driven slope estimation process. Moreover, we show that working in the time-imaging domain allows for the specification of the desired subsurface position in terms of vertical time, which is connected to the Cartesian depth position via the timeto-depth conversion. Our results suggest that the prior velocity model is only required when specifying the position in depth but this requirement can be circumvented by making use of the time-imaging domain and its usual assumptions. Provided that those assumptions are satisfied, the estimated Green’s functions from the proposed method have comparable quality to those obtained with the knowledge of a prior velocity model.
马尔琴科法是一种构造方法,可以得到采集面与介质中任意一点之间的格林函数。该过程通常涉及从期望的地下位置开始求解直接波格林函数的反演,该函数通常使用近似速度模型获得。在本研究中,我们首次提出了在时间成像域中建立马尔琴科方法。我们认识到直接波格林函数的行时与时域处理中常用的Cheop行时金字塔有关,并且可以很容易地从共中点(CMP)聚集的局部斜率中获得。这一观察结果使我们能够用数据驱动的坡度估计过程代替对先验速度模型的需求。此外,我们表明,在时间成像域中工作可以根据垂直时间指定所需的地下位置,垂直时间通过时间到深度的转换与笛卡尔深度位置相连。我们的研究结果表明,只有在确定深度位置时才需要先验速度模型,但可以通过利用时间成像域及其通常假设来规避这一要求。如果满足这些假设,则该方法估计的格林函数与已知先验速度模型的格林函数具有相当的质量。
{"title":"Velocity-independent Marchenko method in time- and depth-imaging domains","authors":"Y. Sripanich, I. Vasconcelos, K. Wapenaar, J. Trampert","doi":"10.1190/SEGAM2018-2992237.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2992237.1","url":null,"abstract":"The Marchenko method represents a constructive technique to obtain Green’s functions between the acquisition surface and any arbitrary point in the medium. The process generally involves solving an inversion starting with a direct-wave Green’s function from the desired subsurface position, which is typically obtained using an approximate velocity model. In this study, we first propose to formulate the Marchenko method in the time-imaging domain. We recognize that the traveltime of the direct-wave Green’s function is related to the Cheop’s traveltime pyramid commonly used in time-domain processing and can be readily obtained from the local slopes of the common-midpoint (CMP) gathers. This observation allows us to substitute the need for a prior velocity model with the data-driven slope estimation process. Moreover, we show that working in the time-imaging domain allows for the specification of the desired subsurface position in terms of vertical time, which is connected to the Cartesian depth position via the timeto-depth conversion. Our results suggest that the prior velocity model is only required when specifying the position in depth but this requirement can be circumvented by making use of the time-imaging domain and its usual assumptions. Provided that those assumptions are satisfied, the estimated Green’s functions from the proposed method have comparable quality to those obtained with the knowledge of a prior velocity model.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124668118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Automated interpretation of top and base salt using deep-convolutional networks 使用深度卷积网络自动解释顶盐和底盐
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2996306.1
O. Gramstad, M. Nickel
{"title":"Automated interpretation of top and base salt using deep-convolutional networks","authors":"O. Gramstad, M. Nickel","doi":"10.1190/SEGAM2018-2996306.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2996306.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124789562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Including internal multiples in joint migration inversion and redatuming of North Sea field data 包括联合迁移反演和北海油田资料重新恢复的内部倍数
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2998168.1
A. Garg, D. Verschuur
{"title":"Including internal multiples in joint migration inversion and redatuming of North Sea field data","authors":"A. Garg, D. Verschuur","doi":"10.1190/SEGAM2018-2998168.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2998168.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130401759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to label seismic structures with deconvolution networks and weak labels 学习用反卷积网络和弱标记标记地震结构
Pub Date : 2018-08-27 DOI: 10.1190/segam2018-2997865.1
Yazeed Alaudah, Shan Gao, G. AlRegib
Recently, there has been increasing interest in using deep learning techniques for various seismic interpretation tasks. However, unlike shallow machine learning models, deep learning models are often far more complex and can have hundreds of millions of free parameters. This not only means that large amounts of computational resources are needed to train these models, but more critically, they require vast amounts of labeled training data as well. In this work, we show how automatically-generated weak labels can be effectively used to overcome this problem and train powerful deep learning models for labeling seismic structures in large seismic volumes. To achieve this, we automatically generate thousands of weak labels and use them to train a deconvolutional network for labeling fault, salt dome, and chaotic regions within the Netherlands F3 block. Furthermore, we show how modifying the loss function to take into account the weak training labels helps reduce false positives in the labeling results. The benefit of this work is that it enables the effective training and deployment of deep learning models to various seismic interpretation tasks without requiring any manual labeling effort. We show excellent results on the Netherlands F3 block, and show how our model outperforms other baseline models.
最近,人们对将深度学习技术用于各种地震解释任务越来越感兴趣。然而,与浅层机器学习模型不同,深度学习模型通常要复杂得多,可以有数亿个自由参数。这不仅意味着需要大量的计算资源来训练这些模型,而且更关键的是,它们还需要大量的标记训练数据。在这项工作中,我们展示了如何有效地使用自动生成的弱标签来克服这个问题,并训练强大的深度学习模型来标记大地震体中的地震结构。为了实现这一目标,我们自动生成数千个弱标签,并使用它们来训练一个反卷积网络,用于标记荷兰F3块内的故障、盐丘和混沌区域。此外,我们展示了如何修改损失函数以考虑弱训练标签有助于减少标记结果中的误报。这项工作的好处是,它可以有效地训练和部署深度学习模型,用于各种地震解释任务,而无需任何手动标记工作。我们在荷兰F3区块上展示了出色的结果,并展示了我们的模型如何优于其他基线模型。
{"title":"Learning to label seismic structures with deconvolution networks and weak labels","authors":"Yazeed Alaudah, Shan Gao, G. AlRegib","doi":"10.1190/segam2018-2997865.1","DOIUrl":"https://doi.org/10.1190/segam2018-2997865.1","url":null,"abstract":"Recently, there has been increasing interest in using deep learning techniques for various seismic interpretation tasks. However, unlike shallow machine learning models, deep learning models are often far more complex and can have hundreds of millions of free parameters. This not only means that large amounts of computational resources are needed to train these models, but more critically, they require vast amounts of labeled training data as well. In this work, we show how automatically-generated weak labels can be effectively used to overcome this problem and train powerful deep learning models for labeling seismic structures in large seismic volumes. To achieve this, we automatically generate thousands of weak labels and use them to train a deconvolutional network for labeling fault, salt dome, and chaotic regions within the Netherlands F3 block. Furthermore, we show how modifying the loss function to take into account the weak training labels helps reduce false positives in the labeling results. The benefit of this work is that it enables the effective training and deployment of deep learning models to various seismic interpretation tasks without requiring any manual labeling effort. We show excellent results on the Netherlands F3 block, and show how our model outperforms other baseline models.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126995184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Reducing artifacts of elastic reverse time migration with de-primary 减少弹性逆时偏移的伪影
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2992968.1
Yang Zhao, H. Zhang, T. Fei, Jidong Yang, Hejun Zhu
{"title":"Reducing artifacts of elastic reverse time migration with de-primary","authors":"Yang Zhao, H. Zhang, T. Fei, Jidong Yang, Hejun Zhu","doi":"10.1190/SEGAM2018-2992968.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2992968.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123841289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetotelluric imaging for exploration in fold-and-thrust belt settings: A feasibility and case study 大地电磁成像在褶皱冲断带勘探中的应用:可行性与实例研究
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2995134.1
R. Streich, Akshat Abhishek
{"title":"Magnetotelluric imaging for exploration in fold-and-thrust belt settings: A feasibility and case study","authors":"R. Streich, Akshat Abhishek","doi":"10.1190/SEGAM2018-2995134.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2995134.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124009924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersectional approaches to counter harassment and discrimination in geophysics 在地球物理学中对抗骚扰和歧视的交叉方法
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2998379.1
A. Mattheis, B. Schneider
{"title":"Intersectional approaches to counter harassment and discrimination in geophysics","authors":"A. Mattheis, B. Schneider","doi":"10.1190/SEGAM2018-2998379.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2998379.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124030799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
SEG Technical Program Expanded Abstracts 2018
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1