首页 > 最新文献

SEG Technical Program Expanded Abstracts 2018最新文献

英文 中文
Towards understanding common features between natural and seismic images 了解自然和地震图像之间的共同特征
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2996501.1
M. Shafiq, M. Prabhushankar, H. Di, G. AlRegib
In this paper, we propose an unsupervised learning framework that aims at evaluating the applicability of the broad domain knowledge from natural images and videos in assisting seismic interpretation, such as seismic attributes, structural automation, and seismic image processing. Specifically, we propose a novel approach based on a data-driven sparse autoencoder architecture that can automatically recognize and extract salient geologic features from unlabeled 3D seismic volumes. It is superior in learning sparse features from natural images, which is not limited by the lack of labeled seismic images. By developing models based on prevalent features in both domains, we can not only automate the process of seismic interpretation but also develop new seismic attributes that highlight areas of interest in seismic sections and convey the most useful information in a compact manner. We show that the proposed approach can effectively detect salient areas within real and synthetic seismic datasets. The experimental results demonstrate the potential of the proposed method in highlighting important geological structures such as horizons, faults, salt domes, and seismic reflections at different orientations and can be effectively used for computer-aided extraction of other geologic features as well.
在本文中,我们提出了一个无监督学习框架,旨在评估来自自然图像和视频的广泛领域知识在辅助地震解释中的适用性,例如地震属性,结构自动化和地震图像处理。具体来说,我们提出了一种基于数据驱动的稀疏自编码器架构的新方法,该方法可以自动识别和提取未标记的三维地震体中的显著地质特征。它在从自然图像中学习稀疏特征方面具有优势,不受缺乏标记地震图像的限制。通过基于这两个领域的普遍特征开发模型,我们不仅可以自动化地震解释过程,还可以开发新的地震属性,突出地震剖面中感兴趣的区域,并以紧凑的方式传达最有用的信息。结果表明,该方法可以有效地检测真实和合成地震数据集中的显著区域。实验结果表明,该方法在突出重要地质构造(如层位、断层、盐丘和不同方位的地震反射)方面具有潜力,也可有效地用于计算机辅助提取其他地质特征。
{"title":"Towards understanding common features between natural and seismic images","authors":"M. Shafiq, M. Prabhushankar, H. Di, G. AlRegib","doi":"10.1190/SEGAM2018-2996501.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2996501.1","url":null,"abstract":"In this paper, we propose an unsupervised learning framework that aims at evaluating the applicability of the broad domain knowledge from natural images and videos in assisting seismic interpretation, such as seismic attributes, structural automation, and seismic image processing. Specifically, we propose a novel approach based on a data-driven sparse autoencoder architecture that can automatically recognize and extract salient geologic features from unlabeled 3D seismic volumes. It is superior in learning sparse features from natural images, which is not limited by the lack of labeled seismic images. By developing models based on prevalent features in both domains, we can not only automate the process of seismic interpretation but also develop new seismic attributes that highlight areas of interest in seismic sections and convey the most useful information in a compact manner. We show that the proposed approach can effectively detect salient areas within real and synthetic seismic datasets. The experimental results demonstrate the potential of the proposed method in highlighting important geological structures such as horizons, faults, salt domes, and seismic reflections at different orientations and can be effectively used for computer-aided extraction of other geologic features as well.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124209681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Addressing the challenges in two unconventional basins 应对两个非常规盆地的挑战
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2984853.1
R. Mccann, Hui Fan, L. Bell, B. Lasscock, Jonathan W. Cheek
{"title":"Addressing the challenges in two unconventional basins","authors":"R. Mccann, Hui Fan, L. Bell, B. Lasscock, Jonathan W. Cheek","doi":"10.1190/SEGAM2018-2984853.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2984853.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123399001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A more stable Q tomography for strong anomalies 更稳定的强异常Q层析成像
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2985969.1
Wang Lei, Liang Jiandong, Zhou Zhengzheng, Zhang Shaohua, Qian Zhongping, Jia Shaohui
{"title":"A more stable Q tomography for strong anomalies","authors":"Wang Lei, Liang Jiandong, Zhou Zhengzheng, Zhang Shaohua, Qian Zhongping, Jia Shaohui","doi":"10.1190/SEGAM2018-2985969.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2985969.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123666719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation of fluid mobility with frequency-dependent Bayesian inversion 基于频率相关贝叶斯反演的流体迁移率估计
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997605.1
Li Lu, Xingyao Yin, Z. Zong, Kun Li
{"title":"Estimation of fluid mobility with frequency-dependent Bayesian inversion","authors":"Li Lu, Xingyao Yin, Z. Zong, Kun Li","doi":"10.1190/SEGAM2018-2997605.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997605.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123678887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A traveltime-based offset-to-angle transform for borehole seismic survey data in anisotropic media 各向异性介质中基于行时的井眼地震测量数据偏移角度变换
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2989356.1
A. Padhi, M. Willis, Xiaomin Zhao
{"title":"A traveltime-based offset-to-angle transform for borehole seismic survey data in anisotropic media","authors":"A. Padhi, M. Willis, Xiaomin Zhao","doi":"10.1190/SEGAM2018-2989356.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2989356.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114353510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the fractal convergence properties of geophysical inverse problems 地球物理反演问题的分形收敛性分析
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997776.1
Brandon Dias, G. Cooper, R. Durrheim
{"title":"Analysis of the fractal convergence properties of geophysical inverse problems","authors":"Brandon Dias, G. Cooper, R. Durrheim","doi":"10.1190/SEGAM2018-2997776.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997776.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"141 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116275208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicomponent deblending of marine data using a pattern-based approach 基于模式方法的海洋数据多分量分离
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2996253.1
Joseph Jennings, R. Chang, B. Biondi, S. Ronen
{"title":"Multicomponent deblending of marine data using a pattern-based approach","authors":"Joseph Jennings, R. Chang, B. Biondi, S. Ronen","doi":"10.1190/SEGAM2018-2996253.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2996253.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114684311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Imaging of 4D seismic during steam injection for shallow heavy oil reservoir in North Kuwait 科威特北部浅层稠油油藏注汽过程的四维地震成像
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2995307.1
A. El-Emam, Jarrah Al-Jenaie, H. Bayri, W. Zahran, C. Koeninger
{"title":"Imaging of 4D seismic during steam injection for shallow heavy oil reservoir in North Kuwait","authors":"A. El-Emam, Jarrah Al-Jenaie, H. Bayri, W. Zahran, C. Koeninger","doi":"10.1190/SEGAM2018-2995307.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2995307.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114692020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time seismic-image interpretation via deconvolutional neural network 基于反卷积神经网络的实时地震图像解释
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2997303.1
H. Di, Zhen Wang, G. AlRegib
Seismic interpretation is now serving as a fundamental tool for depicting subsurface geology and assisting activities in various domains, such as environmental engineering and petroleum exploration. In the past decades, a number of computer-aided tools have been developed for speeding the interpretation process and improving the interpretation accuracy. However, most of the existing interpretation techniques are designed for interpreting a certain seismic feature (e.g., faults and salt domes) in a seismic section or volume at a time; correspondingly, the rest features would be ignored. Full-feature interpretation becomes feasible with the aid of multiple classification techniques. When implemented into the seismic domain, however, the major drawback is the low efficiency particularly for a large dataset, since the classification need to be repeated at every seismic sample. To resolve such limitation, this study proposes implementing the deconvolutional neural network (DCNN) for the purpose of real-time seismic interpretation, so that all the important features in a seismic image can be identified and interpreted both accurately and simultaneously. The performance of the new DCNN tool is verified through application of segmenting the F3 seismic dataset into nine major features, including salt domes, strong reflections, steep dips, etc. Good match is observed between the results and the original seismic signals, indicating not only the capability of the proposed DCNN network in seismic image analysis but also its great potentials for realtime seismic feature interpretation of an entire volume.
地震解释现在是描述地下地质和协助各种领域活动的基本工具,如环境工程和石油勘探。在过去的几十年里,已经开发了一些计算机辅助工具来加快解释过程和提高解释精度。然而,大多数现有的解释技术都是为了一次解释地震剖面或地震体中的某个地震特征(例如断层和盐丘)而设计的;相应地,其余的特征将被忽略。在多种分类技术的帮助下,全特征解释成为可能。然而,当应用到地震领域时,主要的缺点是效率低,特别是对于大型数据集,因为每个地震样本都需要重复分类。为了解决这一限制,本研究提出了实现反卷积神经网络(DCNN)的实时地震解释,以便准确地同时识别和解释地震图像中的所有重要特征。通过将F3地震数据集分割为盐穹、强反射、陡倾角等9个主要特征,验证了新DCNN工具的性能。结果与原始地震信号吻合良好,表明DCNN网络不仅具有地震图像分析的能力,而且在整块体的实时地震特征解释方面具有很大的潜力。
{"title":"Real-time seismic-image interpretation via deconvolutional neural network","authors":"H. Di, Zhen Wang, G. AlRegib","doi":"10.1190/SEGAM2018-2997303.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2997303.1","url":null,"abstract":"Seismic interpretation is now serving as a fundamental tool for depicting subsurface geology and assisting activities in various domains, such as environmental engineering and petroleum exploration. In the past decades, a number of computer-aided tools have been developed for speeding the interpretation process and improving the interpretation accuracy. However, most of the existing interpretation techniques are designed for interpreting a certain seismic feature (e.g., faults and salt domes) in a seismic section or volume at a time; correspondingly, the rest features would be ignored. Full-feature interpretation becomes feasible with the aid of multiple classification techniques. When implemented into the seismic domain, however, the major drawback is the low efficiency particularly for a large dataset, since the classification need to be repeated at every seismic sample. To resolve such limitation, this study proposes implementing the deconvolutional neural network (DCNN) for the purpose of real-time seismic interpretation, so that all the important features in a seismic image can be identified and interpreted both accurately and simultaneously. The performance of the new DCNN tool is verified through application of segmenting the F3 seismic dataset into nine major features, including salt domes, strong reflections, steep dips, etc. Good match is observed between the results and the original seismic signals, indicating not only the capability of the proposed DCNN network in seismic image analysis but also its great potentials for realtime seismic feature interpretation of an entire volume.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"350 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124352026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Low S/N seismicity detection using features of 3D particle motions of direct P-waves 利用直接纵波三维粒子运动特征进行低信噪比地震活动探测
Pub Date : 2018-08-27 DOI: 10.1190/SEGAM2018-2965365.1
Y. Mukuhira, O. Poliannikov, M. Fehler, H. Moriya
{"title":"Low S/N seismicity detection using features of 3D particle motions of direct P-waves","authors":"Y. Mukuhira, O. Poliannikov, M. Fehler, H. Moriya","doi":"10.1190/SEGAM2018-2965365.1","DOIUrl":"https://doi.org/10.1190/SEGAM2018-2965365.1","url":null,"abstract":"","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124476788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
SEG Technical Program Expanded Abstracts 2018
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1