Bernhard Haas, Yuri Y. Shprits, Julia Himmelsbach, Dedong Wang, Alexander Y. Drozdov, Mátyás Szabó-Roberts, Miroslav Hanzelka
Electron precipitation, a crucial link between Earth's magnetosphere and atmosphere, profoundly influences the coupled magnetosphere-ionosphere-atmosphere system. Existing models of the ring current often rely on electron lifetimes for characterizing the effects of pitch-angle scattering, thus limiting accurate predictions of loss cone dynamics. This study introduces a method called steady-state approximation (steady state approximation) utilizing the steady-state solution of the pitch-angle diffusion operator to calculate pitch angle resolved flux within the loss cone. The method enables precise comparisons with low-earth orbit satellite measurements to validate parameterized electron lifetimes. Applying this approach to reevaluate a prior study, we uncover underestimated electron precipitation during geomagnetic storms, particularly in the pre-midnight sector. This discrepancy reveals a previously overlooked loss process. Our method enhances the fidelity of global magnetospheric simulations, contributing to improved predictions of ionospheric conductance and atmospheric chemistry dynamics.
{"title":"Modeling Pitch Angle Dependent Electron Precipitation Using Electron Lifetimes","authors":"Bernhard Haas, Yuri Y. Shprits, Julia Himmelsbach, Dedong Wang, Alexander Y. Drozdov, Mátyás Szabó-Roberts, Miroslav Hanzelka","doi":"10.1029/2024JA032554","DOIUrl":"https://doi.org/10.1029/2024JA032554","url":null,"abstract":"<p>Electron precipitation, a crucial link between Earth's magnetosphere and atmosphere, profoundly influences the coupled magnetosphere-ionosphere-atmosphere system. Existing models of the ring current often rely on electron lifetimes for characterizing the effects of pitch-angle scattering, thus limiting accurate predictions of loss cone dynamics. This study introduces a method called steady-state approximation (steady state approximation) utilizing the steady-state solution of the pitch-angle diffusion operator to calculate pitch angle resolved flux within the loss cone. The method enables precise comparisons with low-earth orbit satellite measurements to validate parameterized electron lifetimes. Applying this approach to reevaluate a prior study, we uncover underestimated electron precipitation during geomagnetic storms, particularly in the pre-midnight sector. This discrepancy reveals a previously overlooked loss process. Our method enhances the fidelity of global magnetospheric simulations, contributing to improved predictions of ionospheric conductance and atmospheric chemistry dynamics.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jicheng Sun, Junyi Ren, Quanming Lu, Beichen Zhang, Huigen Yang
Although initially it was presumed that foreshock waves would propagate directly into the dayside magnetosphere, observational evidence for sinusoidal Pc3 waves in the downstream of quasi-parallel shocks is scarce. The transmission of these waves from the foreshock into the magnetosphere remains uncertain. In this paper, we employ a 3D global hybrid simulation at a realistic scale to explore the generation and transmission of the dayside ULF waves under a radial interplanetary magnetic field. Our findings demonstrate that the Pc3 waves are self-consistently generated in the foreshock region and then transmitted into the magnetosheath and magnetosphere. In the foreshock, the waves are excited at approximately 25 mHz and exhibit right-handed helicity in the plasma frame, characterizing them as quasi-parallel fast magnetosonic waves. In the magnetosphere, the fluctuating magnetic field is mainly parallel to the background magnetic field, which indicates the dominant wave modes are compressional. Fluctuations in the magnetosheath show a broader spectrum (10–100 mHz) compared to those in the magnetosphere and foreshock, potentially explaining the little observation of sinusoidal Pc3 waves in the magnetosheath. Additionally, only lower frequency compressional waves (below 30 mHz) are effectively transmitted into the dayside magnetosphere. Our simulation provides critical insights into the interactions between the solar wind and Earth's magnetosphere.
{"title":"The Transmission of Pc 3 Waves From the Foreshock Into the Earth's Magnetosphere: 3D Global Hybrid Simulation","authors":"Jicheng Sun, Junyi Ren, Quanming Lu, Beichen Zhang, Huigen Yang","doi":"10.1029/2024JA033007","DOIUrl":"https://doi.org/10.1029/2024JA033007","url":null,"abstract":"<p>Although initially it was presumed that foreshock waves would propagate directly into the dayside magnetosphere, observational evidence for sinusoidal Pc3 waves in the downstream of quasi-parallel shocks is scarce. The transmission of these waves from the foreshock into the magnetosphere remains uncertain. In this paper, we employ a 3D global hybrid simulation at a realistic scale to explore the generation and transmission of the dayside ULF waves under a radial interplanetary magnetic field. Our findings demonstrate that the Pc3 waves are self-consistently generated in the foreshock region and then transmitted into the magnetosheath and magnetosphere. In the foreshock, the waves are excited at approximately 25 mHz and exhibit right-handed helicity in the plasma frame, characterizing them as quasi-parallel fast magnetosonic waves. In the magnetosphere, the fluctuating magnetic field is mainly parallel to the background magnetic field, which indicates the dominant wave modes are compressional. Fluctuations in the magnetosheath show a broader spectrum (10–100 mHz) compared to those in the magnetosphere and foreshock, potentially explaining the little observation of sinusoidal Pc3 waves in the magnetosheath. Additionally, only lower frequency compressional waves (below 30 mHz) are effectively transmitted into the dayside magnetosphere. Our simulation provides critical insights into the interactions between the solar wind and Earth's magnetosphere.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}