首页 > 最新文献

Journal of Imaging Science and Technology最新文献

英文 中文
Improved U-Net Fundus Image Segmentation Algorithm Integrating Effective Channel Attention 基于有效信道关注的改进U-Net眼底图像分割算法
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040407
Junhua Liang, Lihua Ding, Xuming Tong, Zhisheng Zhao, J. Li, Junqiang Liang, Beibei Dong, Yanhong Yuan
{"title":"Improved U-Net Fundus Image Segmentation Algorithm Integrating Effective Channel Attention","authors":"Junhua Liang, Lihua Ding, Xuming Tong, Zhisheng Zhao, J. Li, Junqiang Liang, Beibei Dong, Yanhong Yuan","doi":"10.2352/j.imagingsci.technol.2022.66.4.040407","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040407","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48079984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ultrasonic Image Optimization based on Double Constraint Algorithm 基于双约束算法的超声图像优化
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040414
Shuai Zhang, Caiyan Pei, Dejie Sun, Jian Wang, Wenyuan Liu
{"title":"Ultrasonic Image Optimization based on Double Constraint Algorithm","authors":"Shuai Zhang, Caiyan Pei, Dejie Sun, Jian Wang, Wenyuan Liu","doi":"10.2352/j.imagingsci.technol.2022.66.4.040414","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040414","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48154427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect Analysis of Atlas and Global Signal Regression in Classification based on Brain Network for Major Depression Disorders Atlas和全局信号回归在基于脑网络的抑郁症分类中的效果分析
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040413
Dan Long, Yingjun Liu, Zengsi Chen, Jingsi Xie, Cong Luo, Lei Shi
{"title":"The Effect Analysis of Atlas and Global Signal Regression in Classification based on Brain Network for Major Depression Disorders","authors":"Dan Long, Yingjun Liu, Zengsi Chen, Jingsi Xie, Cong Luo, Lei Shi","doi":"10.2352/j.imagingsci.technol.2022.66.4.040413","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040413","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41457154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fall Detection Method for Embedded Devices 嵌入式设备的跌倒检测方法
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040406
Xuepei Ma, Xiao-hong Wang, Kun Zhang
{"title":"Fall Detection Method for Embedded Devices","authors":"Xuepei Ma, Xiao-hong Wang, Kun Zhang","doi":"10.2352/j.imagingsci.technol.2022.66.4.040406","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040406","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42241325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dual-channel Artificial Neural Network Decision Fusion Framework Incorporated with Deep Learning of Inertial Measurement Unit Sensor-based Spectrum Images for Hand Gesture Intention Cognition 基于惯性测量单元传感器频谱图像深度学习的双通道人工神经网络决策融合框架手势意图认知
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040403
I. Ding, Ya-Cheng Juang, Bing Lin
{"title":"A Dual-channel Artificial Neural Network Decision Fusion Framework Incorporated with Deep Learning of Inertial Measurement Unit Sensor-based Spectrum Images for Hand Gesture Intention Cognition","authors":"I. Ding, Ya-Cheng Juang, Bing Lin","doi":"10.2352/j.imagingsci.technol.2022.66.4.040403","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040403","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44910401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medical Mobile Robot Localization in Hospital Corridor Environment Using Laser SLAM and Text Features 基于激光SLAM和文本特征的医疗移动机器人在医院走廊环境中的定位
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040411
Gengyu Ge, Yi Zhang, W. Wang, Qian Wang
{"title":"Medical Mobile Robot Localization in Hospital Corridor Environment Using Laser SLAM and Text Features","authors":"Gengyu Ge, Yi Zhang, W. Wang, Qian Wang","doi":"10.2352/j.imagingsci.technol.2022.66.4.040411","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040411","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42033147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An End-to-end Medical Image Segmentation Model based on Multi-scale Feature Extraction 基于多尺度特征提取的端到端医学图像分割模型
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040416
Tingzhong Wang, Hailong Wang, Nanjie Li, Junhong Xian, Zhongqiang Zhao, Deguang Li
{"title":"An End-to-end Medical Image Segmentation Model based on Multi-scale Feature Extraction","authors":"Tingzhong Wang, Hailong Wang, Nanjie Li, Junhong Xian, Zhongqiang Zhao, Deguang Li","doi":"10.2352/j.imagingsci.technol.2022.66.4.040416","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040416","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48766767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Feature Recognition of Multi Pose Face Images based on Augmented Reality 基于增强现实的多姿态人脸图像自然特征识别
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040410
Wenda Xie, Jun Yu, Xiaobo Jiang, Zongren Chen
{"title":"Natural Feature Recognition of Multi Pose Face Images based on Augmented Reality","authors":"Wenda Xie, Jun Yu, Xiaobo Jiang, Zongren Chen","doi":"10.2352/j.imagingsci.technol.2022.66.4.040410","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040410","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43192019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Deep Learning Networks for Classification of Ultrasonic Thyroid Nodules 超声甲状腺结节分类的层次深度学习网络
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040408
Bo Wang, Fengqiang Yuan, Zhiwei Lv, Ying He, Zongren Chen, Jianhua Hu, Jun Yu, Shuzhao Zheng, Hai Liu
. Thyroid nodules classification in ultrasound images is actively researched in the field of medical image processing. However, due to the low quality of ultrasound images, severe speckle noise, the complexity and diversity of nodules, etc., the classification and diagnosis of thyroid nodules are extremely challenging. At present, deep learning has been widely used in the field of medical image processing, and has achieved good results. However, there are still many problems to be solved. To address these issues, we propose a mask-guided hierarchical deep learning (MHDL) framework for the thyroid nodules classification. Specifically, we first develop a Mask RCNN network to locate thyroid nodules as the region of interest (ROI) for each image, to remove confounding information from input ultrasound images and extract texture, shape and radiology features as the low dimensional features. We then design a residual attention network to extract depth feature map of ROI, and combine the above low dimensional features to form a mixed feature space via dimension alignment technology. Finally, we present an AttentionDrop-based convolutional neural network to implement the classification of benign and malignant thyroid nodules in the mixed feature space. The experimental results show that our proposed method can obtain accurate nodule classification results, and hierarchical deep learning network can further improve the classification performance, which has immense clinical application value. c (cid:13) 2022 Society for Imaging Science and Technology. [DOI: 10.2352
超声图像中甲状腺结节的分类在医学图像处理领域得到了积极的研究。然而,由于超声图像质量低、斑点噪声严重、结节的复杂性和多样性等,甲状腺结节的分类和诊断极具挑战性。目前,深度学习已广泛应用于医学图像处理领域,并取得了良好的效果。然而,仍然有许多问题需要解决。为了解决这些问题,我们提出了一种用于甲状腺结节分类的掩模引导分层深度学习(MHDL)框架。具体而言,我们首先开发了一个Mask RCNN网络,将甲状腺结节定位为每个图像的感兴趣区域(ROI),从输入超声图像中去除混杂信息,并提取纹理、形状和放射学特征作为低维特征。然后,我们设计了一个残差注意力网络来提取ROI的深度特征图,并通过维度对齐技术将上述低维特征组合起来形成混合特征空间。最后,我们提出了一种基于AttentionDrop的卷积神经网络,以在混合特征空间中实现良性和恶性甲状腺结节的分类。实验结果表明,我们提出的方法可以获得准确的结节分类结果,分层深度学习网络可以进一步提高分类性能,具有巨大的临床应用价值。c(cid:13)2022影像科学与技术学会。[DOI:10.2352
{"title":"Hierarchical Deep Learning Networks for Classification of Ultrasonic Thyroid Nodules","authors":"Bo Wang, Fengqiang Yuan, Zhiwei Lv, Ying He, Zongren Chen, Jianhua Hu, Jun Yu, Shuzhao Zheng, Hai Liu","doi":"10.2352/j.imagingsci.technol.2022.66.4.040408","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040408","url":null,"abstract":". Thyroid nodules classification in ultrasound images is actively researched in the field of medical image processing. However, due to the low quality of ultrasound images, severe speckle noise, the complexity and diversity of nodules, etc., the classification and diagnosis of thyroid nodules are extremely challenging. At present, deep learning has been widely used in the field of medical image processing, and has achieved good results. However, there are still many problems to be solved. To address these issues, we propose a mask-guided hierarchical deep learning (MHDL) framework for the thyroid nodules classification. Specifically, we first develop a Mask RCNN network to locate thyroid nodules as the region of interest (ROI) for each image, to remove confounding information from input ultrasound images and extract texture, shape and radiology features as the low dimensional features. We then design a residual attention network to extract depth feature map of ROI, and combine the above low dimensional features to form a mixed feature space via dimension alignment technology. Finally, we present an AttentionDrop-based convolutional neural network to implement the classification of benign and malignant thyroid nodules in the mixed feature space. The experimental results show that our proposed method can obtain accurate nodule classification results, and hierarchical deep learning network can further improve the classification performance, which has immense clinical application value. c (cid:13) 2022 Society for Imaging Science and Technology. [DOI: 10.2352","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42453306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
DiM-PCNet:3D Point Clouds Classification with Multi-scale and Multi-level Feature Net DiM-PCNet:基于多尺度和多层次特征网的三维点云分类
IF 1 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2022-07-01 DOI: 10.2352/j.imagingsci.technol.2022.66.4.040405
Kun Zhang, Liting Zhang, Xiao-hong Wang, Xinshuai Hua, Xuan Gao
{"title":"DiM-PCNet:3D Point Clouds Classification with Multi-scale and Multi-level Feature Net","authors":"Kun Zhang, Liting Zhang, Xiao-hong Wang, Xinshuai Hua, Xuan Gao","doi":"10.2352/j.imagingsci.technol.2022.66.4.040405","DOIUrl":"https://doi.org/10.2352/j.imagingsci.technol.2022.66.4.040405","url":null,"abstract":"","PeriodicalId":15924,"journal":{"name":"Journal of Imaging Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43613241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Imaging Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1