首页 > 最新文献

Journal of Geosciences最新文献

英文 中文
Was the Tynong Batholith, Lachlan Orogen, Australia, extremely hot? Application of pseudosection modelling and TitaniQ geothermometry 澳大利亚拉克兰造山带的泰农基是否非常热?拟截面模拟与TitaniQ地热测量的应用
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-08-07 DOI: 10.3190/jgeosci.305
K. Regmi, P. Hasalová, I. Nicholls
Tonalites to granites of the Tynong Batholith, Lachlan Orogen, southeastern Australia as well as enclaves within them contain primary clinoand orthopyroxenes. These plutons produced very broad (2–10 km) contact aureoles that contain an anatectic zone within metagreywackes. The very broad contact aureoles can be related to the 3-D shapes of the plutons and we assume that the Cpx and Opx are remnants of higher temperature crystallization that were preserved due to water loss or low water content in the magma. Estimates of P and T based on x(Fe) values for coexisting cordierite and biotite in P–T pseudosections for a typical migmatitic hornfels, providing minimum temperature of pluton emplacement, indicate emplacement of the Toorongo tonalite at 4–10 km (1–3 kbar) and 680–750 °C. However, the isopleths of An content of plagioclase indicate depths of up to 14 km at 660–740 °C. We suggest that plagioclase was partially re-equilibrated during melt loss and post-emplacement decompression. Cathodoluminescence (CL) imaging shows that quartz both in the tonalites and hornfels is typically zoned from higher Ti contents in cores to lower in the margins, suggesting a response to falling temperature. Calculated temperatures for quartz crystallization using a Ti-in-quartz thermometer calibrated for 2.5 kbar gave a wide range of values between 900 and 500 °C. This suggests that although the granitoids contain two pyroxenes and have produced a broad contact aureole, they were not emplaced at temperatures as high as previously inferred.
澳大利亚东南部拉克伦造山带Tynong岩基的Tonalites至花岗岩,以及其中的包体包含原生斜辉石和斜方辉石。这些深成岩体产生了非常宽(2-10公里)的接触金矿,在变质杂砂岩中包含一个深熔带。非常宽的接触金黄色可能与深成岩体的三维形状有关,我们认为Cpx和Opx是由于岩浆中的水分损失或低含水量而保存下来的高温结晶的残余物。基于典型混合岩化角毡的P–T假剖面中共存堇青石和黑云母的x(Fe)值对P和T的估计,提供了深成侵位的最低温度,表明Toorongo英云闪长岩在4–10 km(1–3 kbar)和680–750°C的侵位。然而,斜长石An含量的等值线表明,在660–740°C时,其深度可达14公里。我们认为斜长石在熔体流失和侵位后减压过程中部分重新平衡。阴极发光(CL)成像显示,英云闪长岩和角砾岩中的石英通常从岩芯中较高的Ti含量分带到边缘较低的Ti含量,这表明石英对温度下降有反应。使用校准为2.5 kbar的石英中钛温度计计算出的石英结晶温度范围在900和500°C之间。这表明,尽管花岗质岩石含有两个辉石,并产生了广泛的接触Aurele,但它们并没有在之前推断的那么高的温度下侵位。
{"title":"Was the Tynong Batholith, Lachlan Orogen, Australia, extremely hot? Application of pseudosection modelling and TitaniQ geothermometry","authors":"K. Regmi, P. Hasalová, I. Nicholls","doi":"10.3190/jgeosci.305","DOIUrl":"https://doi.org/10.3190/jgeosci.305","url":null,"abstract":"Tonalites to granites of the Tynong Batholith, Lachlan Orogen, southeastern Australia as well as enclaves within them contain primary clinoand orthopyroxenes. These plutons produced very broad (2–10 km) contact aureoles that contain an anatectic zone within metagreywackes. The very broad contact aureoles can be related to the 3-D shapes of the plutons and we assume that the Cpx and Opx are remnants of higher temperature crystallization that were preserved due to water loss or low water content in the magma. Estimates of P and T based on x(Fe) values for coexisting cordierite and biotite in P–T pseudosections for a typical migmatitic hornfels, providing minimum temperature of pluton emplacement, indicate emplacement of the Toorongo tonalite at 4–10 km (1–3 kbar) and 680–750 °C. However, the isopleths of An content of plagioclase indicate depths of up to 14 km at 660–740 °C. We suggest that plagioclase was partially re-equilibrated during melt loss and post-emplacement decompression. Cathodoluminescence (CL) imaging shows that quartz both in the tonalites and hornfels is typically zoned from higher Ti contents in cores to lower in the margins, suggesting a response to falling temperature. Calculated temperatures for quartz crystallization using a Ti-in-quartz thermometer calibrated for 2.5 kbar gave a wide range of values between 900 and 500 °C. This suggests that although the granitoids contain two pyroxenes and have produced a broad contact aureole, they were not emplaced at temperatures as high as previously inferred.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"121-138"},"PeriodicalIF":1.4,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48777646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WinGrt, a Windows program for garnet supergroup minerals WinGrt,一个用于石榴石超群矿物的Windows程序
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-08-07 DOI: 10.3190/jgeosci.303
F. Yavuz, D. Yildirim
A Microsoft® Visual Basic software, called WinGrt, has been developed to calculate and classify wet-chemical and electron-microprobe garnet supergroup mineral analyses. The program evaluates 33 approved species that belong to the tetragonal henritermierite and isometric bitikleite, schorlomite, garnet and berzeliite groups based on the Commission on New Minerals and Mineral Names (CNMMN) of the International Mineralogical Association (IMA–13) nomenclature scheme. WinGrt also evaluates thirty geothermometers using the Fe2+–Mg exchange reactions for garnet–biotite, garnet–clinopyroxene and garnet–orthopyroxene pairs within the application range of greenschist-, amphibolite-, granuliteand eclogite-facies metamorphic rocks. As naturally occurring garnet is potentially a useful provenance indicator, the program calculates end-member molecules from chemical compositions on the basis of different approaches and yields pyrope, almandine, spessartine, grossular, andradite and schorlomite phase on various ternary discrimination diagrams used in provenance studies. The ferric and ferrous iron contents from total FeO (wt. %) amount are estimated by stoichiometric constraints. The program allows the users to enter 30 input variables including Sample No, SiO2, TiO2, ZrO2, HfO2, Th2O, SnO2, Al2O3, Cr2O3, V2O3, Fe2O3, Mn2O3, Sc2O3, Y2O3 + REE2O3, FeO, MgO, MnO, ZnO, CaO, Na2O, Li2O, P2O5, V2O5, Sb2O5, As2O5, Nb2O5, UO3, Te2O3, F and H2O (wt. %). WinGrt also enables the user to enter the total REE2O3 (wt. %) as input values from La2O3 to Lu2O3 (wt. %) of garnet supergroup mineral analyses in program’s data edit section. WinGrt enables the user to type or load multiple garnet compositions in the data entry section, to edit and load Microsoft® Excel files in calculating, classifying and naming the garnet species, and to store all the calculated parameters in the Microsoft® Excel file for further evaluation.
开发了一款名为WinGrt的Microsoft®Visual Basic软件,用于计算和分类湿化学和电子探针石榴石超组矿物分析。该项目根据国际矿物学协会(IMA-13)的新矿物和矿物名称委员会(CNMMN)命名方案,评估了33种已批准的物种,这些物种属于四方铁镁石和等角铁镁石、钾镁石、石榴石和绿柱石组。WinGrt还使用Fe2+–Mg交换反应对绿片岩相变质岩、角闪岩相变质岩、麻粒岩相变质岩和榴辉岩相变质岩应用范围内的石榴石-黑云母、石榴石-斜辉石和石榴石-斜方辉石对进行了30个地热计的评估。由于天然存在的石榴石可能是一种有用的物源指标,该程序根据不同的方法从化学成分中计算出末端成员分子,并在物源研究中使用的各种三元判别图上产生焦绿石、铝榴石、锡榴石、钙榴石、镁榴石和钾榴石相。FeO总量中的铁和亚铁含量(wt.%)通过化学计量约束进行估算。该程序允许用户输入30个输入变量,包括样品号、SiO2、TiO2、ZrO2、HfO2、Th2O、SnO2、Al2O3、Cr2O3、V2O3、Fe2O3、Mn2O3、Sc2O3、Y2O3+REE2O3、FeO、MgO、MnO、ZnO、CaO、Na2O、Li2O、P2O5、V2O5、Sb2O5、As2O5、Nb2O5、UO3、Te2O3、F和H2O(wt.%)。WinGrt还允许用户在程序的数据编辑部分输入总REE2O3(wt.%),作为石榴石超群矿物分析的La2O3到Lu2O3(wt%)的输入值。WinGrt允许用户在数据输入部分键入或加载多个石榴石成分,在计算、分类和命名石榴石物种时编辑和加载Microsoft®Excel文件,并将所有计算参数存储在Microsoft®Excel中以供进一步评估。
{"title":"WinGrt, a Windows program for garnet supergroup minerals","authors":"F. Yavuz, D. Yildirim","doi":"10.3190/jgeosci.303","DOIUrl":"https://doi.org/10.3190/jgeosci.303","url":null,"abstract":"A Microsoft® Visual Basic software, called WinGrt, has been developed to calculate and classify wet-chemical and electron-microprobe garnet supergroup mineral analyses. The program evaluates 33 approved species that belong to the tetragonal henritermierite and isometric bitikleite, schorlomite, garnet and berzeliite groups based on the Commission on New Minerals and Mineral Names (CNMMN) of the International Mineralogical Association (IMA–13) nomenclature scheme. WinGrt also evaluates thirty geothermometers using the Fe2+–Mg exchange reactions for garnet–biotite, garnet–clinopyroxene and garnet–orthopyroxene pairs within the application range of greenschist-, amphibolite-, granuliteand eclogite-facies metamorphic rocks. As naturally occurring garnet is potentially a useful provenance indicator, the program calculates end-member molecules from chemical compositions on the basis of different approaches and yields pyrope, almandine, spessartine, grossular, andradite and schorlomite phase on various ternary discrimination diagrams used in provenance studies. The ferric and ferrous iron contents from total FeO (wt. %) amount are estimated by stoichiometric constraints. The program allows the users to enter 30 input variables including Sample No, SiO2, TiO2, ZrO2, HfO2, Th2O, SnO2, Al2O3, Cr2O3, V2O3, Fe2O3, Mn2O3, Sc2O3, Y2O3 + REE2O3, FeO, MgO, MnO, ZnO, CaO, Na2O, Li2O, P2O5, V2O5, Sb2O5, As2O5, Nb2O5, UO3, Te2O3, F and H2O (wt. %). WinGrt also enables the user to enter the total REE2O3 (wt. %) as input values from La2O3 to Lu2O3 (wt. %) of garnet supergroup mineral analyses in program’s data edit section. WinGrt enables the user to type or load multiple garnet compositions in the data entry section, to edit and load Microsoft® Excel files in calculating, classifying and naming the garnet species, and to store all the calculated parameters in the Microsoft® Excel file for further evaluation.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"71-95"},"PeriodicalIF":1.4,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48462614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Stangersite, a new tin germanium sulfide, from the Kateřina mine, Radvanice near Trutnov, Czech Republic Stangersite,一种新的锡锗硫化物,来自捷克共和国Trutnov附近的Radvanice Kateřina矿
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.3190/jgeosci.306
J. Sejkora, E. Makovicky, T. Balić-Žunić, P. Berlepsch
The new mineral stangersite was found in the burning waste dump of abandoned Kateřina coal mine at Radvanice near Trutnov, northern Bohemia, Czech Republic. The new mineral occurs as well-formed, flattened, acicular crystals with a cross-section of 2–5 × 20–40 μm and up to 1 cm in length. They constitute random or fan-shaped clusters on rock fragments and on crumbly black ash in association with greenockite, herzenbergite, unnamed GeS 2 and GeAsS. Stangersite was also observed as irregular grains, up to 100 μm in size, in the multicomponent aggregates on which the above-described crystals grow. These aggregates are formed, beside stangersite, by minerals of Bi–Sb, Bi 2 S 3 –Sb 2 S 3 and Bi 2 S 3 –Bi 2 Se 3 solid solutions, Bi 3 S 2 , Bi-sulfo/seleno/tellurides, tellurium, unnamed PbGeS 3 , Cd 4 GeS 6 , GeAsS, GeS 2 , Sn 5 Sb 3 S 7 , greenockite, cadmoindite, herzenbergite, teallite and Sn- and/or Se-bearing galena. Stangersite formed under reducing conditions by direct crystallization from hot gasses (250–350 °C) containing Cl and F, at a depth of 30–60 cm under the surface of the (100) layers of Sn 2+ S 5 coordination pyramids and with interspaces filled by lone electron pairs of Sn 2+ and [001] chains of Ge 4+ S 4 coordination tetrahedra. The Raman spectrum of stangersite with tentative band assignments is given. We named the mineral after its chemical constituents: Sn ( stan num), Ge ( ger manium) and S ( s ulphur).
在捷克共和国波希米亚北部Trutnov附近的Radvanice,在废弃的Kateřina煤矿燃烧的废料堆中发现了新的矿物奇异点。新矿物以形态良好、扁平的针状晶体形式存在,其横截面为2-5 × 20-40 μm,长度可达1 cm。它们在岩石碎片和易碎的黑灰上形成随机的或扇形的簇,与绿岩、黑原石、未命名的ge2和geas有关。在上述晶体生长的多组分聚集体中,还观察到奇异石的不规则颗粒,大小可达100 μm。这些聚集体除奇异矿外,还由Bi- Sb、bi2s3 - sb2s3和bi2s3 - bi2se 3固溶体、bi3s2、Bi-sulfo/seleno/tellurides、碲、未命名的PbGeS 3、cd4ges 6、GeAsS、GeS 2、sn5s3s7、绿辉石、钙辉石、矽辉石、青石和含锡和/或含硒方铅矿组成。在还原条件下,由含Cl和F的高温气体(250-350℃)在Sn 2+ s5配位金字塔(100)层表面下30-60 cm的深度直接结晶形成奇异体,间隙由Sn 2+的孤电子对和Ge 4+ s4配位四面体的[001]链填充。给出了具有暂定波段赋值的奇异点拉曼光谱。我们根据它的化学成分:Sn (stan num), Ge (ger manium)和S (S ulur)来命名这种矿物。
{"title":"Stangersite, a new tin germanium sulfide, from the Kateřina mine, Radvanice near Trutnov, Czech Republic","authors":"J. Sejkora, E. Makovicky, T. Balić-Žunić, P. Berlepsch","doi":"10.3190/jgeosci.306","DOIUrl":"https://doi.org/10.3190/jgeosci.306","url":null,"abstract":"The new mineral stangersite was found in the burning waste dump of abandoned Kateřina coal mine at Radvanice near Trutnov, northern Bohemia, Czech Republic. The new mineral occurs as well-formed, flattened, acicular crystals with a cross-section of 2–5 × 20–40 μm and up to 1 cm in length. They constitute random or fan-shaped clusters on rock fragments and on crumbly black ash in association with greenockite, herzenbergite, unnamed GeS 2 and GeAsS. Stangersite was also observed as irregular grains, up to 100 μm in size, in the multicomponent aggregates on which the above-described crystals grow. These aggregates are formed, beside stangersite, by minerals of Bi–Sb, Bi 2 S 3 –Sb 2 S 3 and Bi 2 S 3 –Bi 2 Se 3 solid solutions, Bi 3 S 2 , Bi-sulfo/seleno/tellurides, tellurium, unnamed PbGeS 3 , Cd 4 GeS 6 , GeAsS, GeS 2 , Sn 5 Sb 3 S 7 , greenockite, cadmoindite, herzenbergite, teallite and Sn- and/or Se-bearing galena. Stangersite formed under reducing conditions by direct crystallization from hot gasses (250–350 °C) containing Cl and F, at a depth of 30–60 cm under the surface of the (100) layers of Sn 2+ S 5 coordination pyramids and with interspaces filled by lone electron pairs of Sn 2+ and [001] chains of Ge 4+ S 4 coordination tetrahedra. The Raman spectrum of stangersite with tentative band assignments is given. We named the mineral after its chemical constituents: Sn ( stan num), Ge ( ger manium) and S ( s ulphur).","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46934918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A word of the retiring Editor-in-Chief & A word of the newly-coming Editor-in-Chief: (Not such) significant changes in the editorial board 即将退休的主编的一句话和即将上任的主编的一番话:编委会发生了重大变化
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.3190/jgeosci.311
V. Janoušek, J. Plášil
{"title":"A word of the retiring Editor-in-Chief & A word of the newly-coming Editor-in-Chief: (Not such) significant changes in the editorial board","authors":"V. Janoušek, J. Plášil","doi":"10.3190/jgeosci.311","DOIUrl":"https://doi.org/10.3190/jgeosci.311","url":null,"abstract":"","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46748840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pošepnýite, a new Hg-rich member of the tetrahedrite group from Příbram, Czech Republic Pošepnýite是来自捷克共和国Příbram的一个新的富氢四面体成员
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.3190/jgeosci.308
P. Škácha, J. Sejkora, J. Plášil, E. Makovicky
1 Mining muzeum Příbram, Hynka Kličky place 293, Příbram VI, 261 01, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9-Horní Počernice, 193 00, Czech Republic; jiri_sejkora@nm.cz 3 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Praha 8, Czech Republic 4 Institute for Geoscience and Natural Resources Managment, University of Copenhagen, Østervolgade 10, DK-1350, Copenhagen K, Denmark * Corresponding author
1捷克共和国Příbram矿业博物馆,Hynka Kličky place 293,Pýíbram VI,261 01 2捷克共和国国家博物馆矿物学和岩石学部,Circusová1740,布拉格9-HorníPočernice,193 00;jiri_sejkora@nm.cz3物理研究所ASCR,v.v.i.,Na Slovance 1999/2,182 21 Praha 8,捷克共和国4哥本哈根大学地球科学和自然资源管理研究所,丹麦哥本哈根K,Östervolgade 10,DK-1350
{"title":"Pošepnýite, a new Hg-rich member of the tetrahedrite group from Příbram, Czech Republic","authors":"P. Škácha, J. Sejkora, J. Plášil, E. Makovicky","doi":"10.3190/jgeosci.308","DOIUrl":"https://doi.org/10.3190/jgeosci.308","url":null,"abstract":"1 Mining muzeum Příbram, Hynka Kličky place 293, Příbram VI, 261 01, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9-Horní Počernice, 193 00, Czech Republic; jiri_sejkora@nm.cz 3 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Praha 8, Czech Republic 4 Institute for Geoscience and Natural Resources Managment, University of Copenhagen, Østervolgade 10, DK-1350, Copenhagen K, Denmark * Corresponding author","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45454407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The petrostructural characteristics and 207Pb/206Pb zircon data from the Ngomedzap-Akongo area (Nyong complex, SW-Cameroon) Ngomedzap Akongo地区(喀麦隆西南部Nyong杂岩)的岩石结构特征和207Pb/206Pb锆石数据
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.3190/jgeosci.309
S. Owona, J. M. Ondoa, M. Tichomirowa, G. Ekodeck
Herein, we constrain the Ngomedzap–Akongo geodynamic evolution in the eastern part of the Nyong complex (NyC) in SW Cameroon that belongs to the Paleoproterozoic West Central African Fold Belt (WCAF) through petrostructural field observations, laboratory analyses, and 207Pb/206Pb zircon geochronology. It consists of magnetite bearing quartzite, metagranodiorite, metaanorthosite, metagabbro, and metasyenites that have recorded a polyphase D1–D3 deformation. D1, likely a pure shear-type, has been strongly overprinted by the D2 transpression flow regime that emplaced the Nyong tectonic nappe, transported top – to the East onto the Congo shield. This nappe is dissected by D3 blastomylonitic shear-zones. Both the D2 and D3 have controlled the actual geometry of the Nyong belt, later crosscut by D4 multiple brittle tectonic styles, likely post-orogenic. Zircon geochronology yielded 207Pb/206Pb zircon geochronology protolith Archean mean ages of 2764 ± 26 Ma (MSWD = 0.81) in metagranodiorite; 2816 ± 34 Ma (MSWD = 1.3) and 2789 ± 13 Ma (MSWD = 0.28) in metasyenites. These new data corroborate old ones and, together, document the Archean origin of the NyC as details of the Nyong fold-and-thrust belts that of WCAFB and South American homologous due to the colliding Congo-San Francisco shields associated with Eburnean/Trans Amazonian orogeny (~2100–2050 Ma).
在此,我们通过岩石结构现场观测、实验室分析和207Pb/206Pb锆石地质年代学,限制了喀麦隆西南部Nyong杂岩(NyC)东部的Ngomedzap–Akongo地球动力学演化,该杂岩属于古元古代西非褶皱带(WCAF)。它由含磁铁矿的石英岩、变花岗闪长岩、变斜长岩、变辉长岩和变正长岩组成,记录了多相D1–D3变形。D1,可能是一种纯剪切型,被D2的转压流机制强烈叠加,该机制侵位了Nyong构造推覆体,将顶部向东输送到刚果地盾上。该推覆体被D3变糜棱岩剪切带分割。D2和D3都控制了Nyong带的实际几何形状,后来被D4多种脆性构造样式横切,可能是造山后的。锆石地质年代学得出变花岗闪长岩中207Pb/206Pb锆石地质年代学原岩的太古宙平均年龄为2764±26Ma(MSWD=0.81);变正长岩中的2816±34Ma(MSWD=1.3)和2789±13Ma(MSWD=0.28)。这些新的数据证实了旧的数据,并共同记录了NyC的太古宙起源,作为Nyong褶皱和冲断带的细节,WCAFB和南美的褶皱和冲断层带是由于与Eburnean/跨亚马逊造山运动(约2100–2050 Ma)相关的Congo-SanFrancisco地盾碰撞而同源的。
{"title":"The petrostructural characteristics and 207Pb/206Pb zircon data from the Ngomedzap-Akongo area (Nyong complex, SW-Cameroon)","authors":"S. Owona, J. M. Ondoa, M. Tichomirowa, G. Ekodeck","doi":"10.3190/jgeosci.309","DOIUrl":"https://doi.org/10.3190/jgeosci.309","url":null,"abstract":"Herein, we constrain the Ngomedzap–Akongo geodynamic evolution in the eastern part of the Nyong complex (NyC) in SW Cameroon that belongs to the Paleoproterozoic West Central African Fold Belt (WCAF) through petrostructural field observations, laboratory analyses, and 207Pb/206Pb zircon geochronology. It consists of magnetite bearing quartzite, metagranodiorite, metaanorthosite, metagabbro, and metasyenites that have recorded a polyphase D1–D3 deformation. D1, likely a pure shear-type, has been strongly overprinted by the D2 transpression flow regime that emplaced the Nyong tectonic nappe, transported top – to the East onto the Congo shield. This nappe is dissected by D3 blastomylonitic shear-zones. Both the D2 and D3 have controlled the actual geometry of the Nyong belt, later crosscut by D4 multiple brittle tectonic styles, likely post-orogenic. Zircon geochronology yielded 207Pb/206Pb zircon geochronology protolith Archean mean ages of 2764 ± 26 Ma (MSWD = 0.81) in metagranodiorite; 2816 ± 34 Ma (MSWD = 1.3) and 2789 ± 13 Ma (MSWD = 0.28) in metasyenites. These new data corroborate old ones and, together, document the Archean origin of the NyC as details of the Nyong fold-and-thrust belts that of WCAFB and South American homologous due to the colliding Congo-San Francisco shields associated with Eburnean/Trans Amazonian orogeny (~2100–2050 Ma).","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"201-219"},"PeriodicalIF":1.4,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49149048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
New crystal-chemical data on zincoberaunite from Krásno near Horní Slavkov (Czech Republic) HorníSlavkov附近Krásno锌钴酸盐的新晶体化学数据(捷克共和国)
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-04-12 DOI: 10.3190/jgeosci.296
J. Tvrdý, J. Plášil, R. Škoda
A study of zincoberaunite from Krásno near Horní Slavkov (Czech Republic) provided new chemical and structural data of this rare member of the beraunite group. The studied material is monoclinic, space group C2/c, with a = 20.3440(19) Å, b = 5.1507(3) Å, c = 19.1361(15) Å, β = 93.568(8)°, V = 2001.3(3) Å3, Z = 4. Based on refined site occupancies and bond-valence considerations, the structural formula is (Zn0.81Al0.19)(OH)2(Fe0.61Al0.39)(OH)2(H2O)2(Fe1.52Al0.48)(H2O)2(Fe1.72Al0.28) (OH)(PO4)3.83(AsO4)0.17(H2O)2. Electron-microprobe analyses support the obtained results. However, keeping the same cation occupancy at the M2–M4 sites, the ratio of Al3+ to Me2+ at the M1 site requires the presence of divalent cations as follows: (Zn0.57Fe0.24Al0.19)Σ1.00(Fe3.85Al1.15)Σ5.00[(PO4)3.89(AsO4)0.10(SiO4)0.01]Σ4.00[(OH)4.59F0.24 O0.17]Σ5.00(OH2)4.00·2H2O. Individual prismatic zincoberaunite crystals exhibit a chemical zonation manifested by increasing Fe and decreasing Zn and Al contents from cores to rims. The mineral composition is close to the Zn–Al-rich members of the beraunite group known from the same locality, but in this case, dominant occupancy of Zn at the M1 site was confirmed. With its increased aluminium content, zincoberaunite from Krásno differs significantly from the holotype specimen described from Hagendorf South pegmatite in Germany. The most prominent Raman bands are in good agreement with data published for related members of the beraunite group. Structure refinement (R = 3.56 % for 1906 observed unique reflections) revealed three different types of OH or H2O, which play distinct role in structure bonding.
对HorníSlavkov(捷克共和国)附近Krásno的锌硼镁石的研究提供了这种罕见的硼镁石群成员的新化学和结构数据。所研究的材料是单斜的,空间群C2/c,a=20.3440(19)Å,b=5.1507(3)Å、c=19.1361(15)Å和β=93.568(8)°,V=2001.3(3)å3,Z=4。基于精细的位点占用和键价考虑,结构式为(Zn0.81Al0.19)(OH)2(Fe0.61Al0.39)。电子探针分析支持所获得的结果。然而,在M2–M4位点保持相同的阳离子占有率,M1位点的Al3+与Me2+之比需要二价阳离子的存在,如下所示:(Zn0.57Fe0.24Al0.19)∑1.00(Fe3.85Al1.15)∑5.00[(PO4)3.89(AsO4)0.10(SiO4)0.01]∑4.00[(OH)4.59F0.24O0.17]∑5.00(OH2)4.00·2H2O。单个棱柱状锌钴石晶体表现出化学分带现象,表现为从核心到边缘的Fe增加和Zn和Al含量减少。矿物成分接近同一地区已知的富含锌-铝的紫苏岩群成员,但在这种情况下,证实了锌在M1位点的主要占有率。随着铝含量的增加,Krásno的锌钴矿与德国Hagendorf South伟晶岩的正模标本有很大不同。最突出的拉曼光谱带与发表的紫苏属相关成员的数据非常一致。结构细化(1906次观察到的独特反射的R=3.56%)揭示了三种不同类型的OH或H2O,它们在结构键合中起着不同的作用。
{"title":"New crystal-chemical data on zincoberaunite from Krásno near Horní Slavkov (Czech Republic)","authors":"J. Tvrdý, J. Plášil, R. Škoda","doi":"10.3190/jgeosci.296","DOIUrl":"https://doi.org/10.3190/jgeosci.296","url":null,"abstract":"A study of zincoberaunite from Krásno near Horní Slavkov (Czech Republic) provided new chemical and structural data of this rare member of the beraunite group. The studied material is monoclinic, space group C2/c, with a = 20.3440(19) Å, b = 5.1507(3) Å, c = 19.1361(15) Å, β = 93.568(8)°, V = 2001.3(3) Å3, Z = 4. Based on refined site occupancies and bond-valence considerations, the structural formula is (Zn0.81Al0.19)(OH)2(Fe0.61Al0.39)(OH)2(H2O)2(Fe1.52Al0.48)(H2O)2(Fe1.72Al0.28) (OH)(PO4)3.83(AsO4)0.17(H2O)2. Electron-microprobe analyses support the obtained results. However, keeping the same cation occupancy at the M2–M4 sites, the ratio of Al3+ to Me2+ at the M1 site requires the presence of divalent cations as follows: (Zn0.57Fe0.24Al0.19)Σ1.00(Fe3.85Al1.15)Σ5.00[(PO4)3.89(AsO4)0.10(SiO4)0.01]Σ4.00[(OH)4.59F0.24 O0.17]Σ5.00(OH2)4.00·2H2O. Individual prismatic zincoberaunite crystals exhibit a chemical zonation manifested by increasing Fe and decreasing Zn and Al contents from cores to rims. The mineral composition is close to the Zn–Al-rich members of the beraunite group known from the same locality, but in this case, dominant occupancy of Zn at the M1 site was confirmed. With its increased aluminium content, zincoberaunite from Krásno differs significantly from the holotype specimen described from Hagendorf South pegmatite in Germany. The most prominent Raman bands are in good agreement with data published for related members of the beraunite group. Structure refinement (R = 3.56 % for 1906 observed unique reflections) revealed three different types of OH or H2O, which play distinct role in structure bonding.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"45-57"},"PeriodicalIF":1.4,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49545909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Activation energy of annealed, partially metamict davidite by 57Fe Mössbauer spectroscopy 57Fe Mössbauer光谱分析退火后部分变质大卫石的活化能
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-04-12 DOI: 10.3190/jgeosci.298
D. Malczewski, A. Grabias, M. Dziurowicz
{"title":"Activation energy of annealed, partially metamict davidite by 57Fe Mössbauer spectroscopy","authors":"D. Malczewski, A. Grabias, M. Dziurowicz","doi":"10.3190/jgeosci.298","DOIUrl":"https://doi.org/10.3190/jgeosci.298","url":null,"abstract":"","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"37-44"},"PeriodicalIF":1.4,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41515981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of the uranyl-molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)˜5.0: insights from a precession electron-diffraction tomography study 铀酰钼酸盐钙镁石Ca[(UO2)3(MoO4)2(OH)4](H2O)≈5.0的晶体结构:来自进动电子衍射层析研究的见解
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-04-12 DOI: 10.3190/jgeosci.297
G. Steciuk, R. Škoda, J. Rohlíček, J. Plášil
Calcurmolite is a rare supergene U mineral formed during the alteration–hydration weathering of uraninite and hypogene Mo minerals; its structure has remained unsolved owing to a lack of crystal material suitable for conventional structure analysis. Here, single-crystal precession electron-diffraction tomography shows the calcurmolite (Rabejac, France) structure to be modulated; it is triclinic, crystallizing in the super-space group P1(α00)0, with a = 3.938 Å, b = 11.26 Å, c = 14.195 Å, α = 84.4°, β = 112.5°, γ = 133.95° and has a modulation vector q = 0.4 a*. Due to the poor quality of diffraction data, only a kinematical refinement was undertaken, although final results were reasonable: Robs/Rall = 0.3825/0.3834 for 3953/17442 observed/all reflections. The structure of calcurmolite is based upon the infinite uranyl–molybdate sheets with baumoite topology (U : Mo ratio = 1.5) and an interlayer of 6-coordinated Ca2+ cations with interstitial H2O (ligands are apical uranyl O atoms and molecular H2O). Adjacent sheets are linked via Ca–O, as well as H-bonds. The structure formula, based on assumed occupancies in the supercell 5a × b × c, is Ca[(UO2)3 (MoO4)2(OH)4](H2O)~5.0 (for Z = 4).
Calcurmolite是一种罕见的浅生铀矿物,形成于铀岩和深生钼矿物的蚀变-水化风化过程中;由于缺乏适用于常规结构分析的晶体材料,其结构仍未解决。在这里,单晶进动电子衍射层析成像显示了待调制的钙铬铁矿(Rabejac,France)结构;它是三斜晶系,在超空间群P1(α00)0中结晶,a=3.938Å,b=11.26Å,c=14.195Å,α=84.4°,β=112.5°,γ=133.95°,调制矢量q=0.4 a*。由于衍射数据质量差,尽管最终结果是合理的,但只进行了运动学改进:观察到的3953/1742次/所有反射的Robs/Rall=0.3825/0.3834。钙铬铁矿的结构是基于具有鲍矿拓扑结构(U:Mo比率=1.5)的无限铀酰-钼酸盐片和具有间隙H2O的6配位Ca2+阳离子的夹层(配体是顶端的铀酰O原子和分子H2O)。相邻的薄片通过Ca–O以及氢键连接。基于超晶胞5a×b×c中的假定占有率,结构公式为Ca[(UO2)3(MoO4)2(OH)4](H2O)~5.0(对于Z=4)。
{"title":"Crystal structure of the uranyl-molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)˜5.0: insights from a precession electron-diffraction tomography study","authors":"G. Steciuk, R. Škoda, J. Rohlíček, J. Plášil","doi":"10.3190/jgeosci.297","DOIUrl":"https://doi.org/10.3190/jgeosci.297","url":null,"abstract":"Calcurmolite is a rare supergene U mineral formed during the alteration–hydration weathering of uraninite and hypogene Mo minerals; its structure has remained unsolved owing to a lack of crystal material suitable for conventional structure analysis. Here, single-crystal precession electron-diffraction tomography shows the calcurmolite (Rabejac, France) structure to be modulated; it is triclinic, crystallizing in the super-space group P1(α00)0, with a = 3.938 Å, b = 11.26 Å, c = 14.195 Å, α = 84.4°, β = 112.5°, γ = 133.95° and has a modulation vector q = 0.4 a*. Due to the poor quality of diffraction data, only a kinematical refinement was undertaken, although final results were reasonable: Robs/Rall = 0.3825/0.3834 for 3953/17442 observed/all reflections. The structure of calcurmolite is based upon the infinite uranyl–molybdate sheets with baumoite topology (U : Mo ratio = 1.5) and an interlayer of 6-coordinated Ca2+ cations with interstitial H2O (ligands are apical uranyl O atoms and molecular H2O). Adjacent sheets are linked via Ca–O, as well as H-bonds. The structure formula, based on assumed occupancies in the supercell 5a × b × c, is Ca[(UO2)3 (MoO4)2(OH)4](H2O)~5.0 (for Z = 4).","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"15-25"},"PeriodicalIF":1.4,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45905087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Foreword to the special issue arising from the 9th European Conference on Mineralogy and Spectroscopy 第九届欧洲矿物学和光谱学会议特别议题的前言
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-04-12 DOI: 10.3190/jgeosci.302
F. Laufek, J. Plášil, J. Cempírek, R. Škoda
Spectroscopy methods provide valuable information about the local structure of minerals, since they do not depend on long-range periodicity (they are sensitive to defects or substitutions and vice versa), and, therefore represent great complementary techniques to diffraction methods that are used to analyze periodic (global) structures of minerals. Spectroscopy techniques have been successfully applied to the minerals during past decades, namely due to still-growing possibilities connected with the evolution of the instrumentation and data analysis. Following the European Spectroscopic Conferences in Rome (1988), Berlin (1995), Kiev (1996), Paris (2001), Vienna (2004), Stockholm (2007), Potsdam (2011) and Rome (2015), the 9th European Conference on Mineralogy and Spectroscopy (ECMS 2019) took place at Břevnov Monastery, Prague, Czech Republic on September 10–13, 2019. The conference brought together 111 participants from 20 countries. One hundred two oral and poster contributions were presented during three days. Among these contributions, six invited keynote-talks were presented by Peter C. Burns (University of Notre Dame, USA), Janice Bishop (SETI Institute, USA), Sergey V. Krivovichev (St. Petersburg State University, Russia), Anna Vymazalová (Czech Geological Survey, Czechia), Jural Majzlan (Friedrich Schiller Universität, Germany) and Sergey S. Lobanov (GFZ German Research Center for Geosciences, Germany). About one third of the delegates were students, who had the opportunity to present their work to broad international audience. Two workshops focused on gemstone deposits and training in crystallographic com-
光谱学方法提供了有关矿物局部结构的有价值的信息,因为它们不依赖于长期周期性(它们对缺陷或取代敏感,反之亦然),因此是用于分析矿物周期性(整体)结构的衍射方法的重要补充技术。光谱学技术在过去几十年中已成功地应用于矿物,这是由于仪器和数据分析的发展所带来的可能性不断增加。继罗马(1988年)、柏林(1995年)、基辅(1996年)、巴黎(2001年)、维也纳(2004年)、斯德哥尔摩(2007年)、波茨坦(2011年)和罗马(2015年)的欧洲光谱学会议之后,第九届欧洲矿物学和光谱学会议(ECMS 2019)于2019年9月10日至13日在捷克共和国布拉格Břevnov修道院举行。会议汇集了来自20个国家的111名与会者。三天内提交了120份口头和海报稿件。其中,Peter C. Burns(美国圣母大学),Janice Bishop(美国SETI研究所),Sergey V. Krivovichev(俄罗斯圣彼得堡国立大学),Anna vymazalov(捷克地质调查局,捷克),Jural Majzlan (Friedrich Schiller Universität,德国)和Sergey S. Lobanov(德国GFZ德国地球科学研究中心)做了6次特邀主题演讲。大约三分之一的代表是学生,他们有机会向广泛的国际观众介绍他们的作品。两个讲习班集中于宝石矿床和晶体学培训
{"title":"Foreword to the special issue arising from the 9th European Conference on Mineralogy and Spectroscopy","authors":"F. Laufek, J. Plášil, J. Cempírek, R. Škoda","doi":"10.3190/jgeosci.302","DOIUrl":"https://doi.org/10.3190/jgeosci.302","url":null,"abstract":"Spectroscopy methods provide valuable information about the local structure of minerals, since they do not depend on long-range periodicity (they are sensitive to defects or substitutions and vice versa), and, therefore represent great complementary techniques to diffraction methods that are used to analyze periodic (global) structures of minerals. Spectroscopy techniques have been successfully applied to the minerals during past decades, namely due to still-growing possibilities connected with the evolution of the instrumentation and data analysis. Following the European Spectroscopic Conferences in Rome (1988), Berlin (1995), Kiev (1996), Paris (2001), Vienna (2004), Stockholm (2007), Potsdam (2011) and Rome (2015), the 9th European Conference on Mineralogy and Spectroscopy (ECMS 2019) took place at Břevnov Monastery, Prague, Czech Republic on September 10–13, 2019. The conference brought together 111 participants from 20 countries. One hundred two oral and poster contributions were presented during three days. Among these contributions, six invited keynote-talks were presented by Peter C. Burns (University of Notre Dame, USA), Janice Bishop (SETI Institute, USA), Sergey V. Krivovichev (St. Petersburg State University, Russia), Anna Vymazalová (Czech Geological Survey, Czechia), Jural Majzlan (Friedrich Schiller Universität, Germany) and Sergey S. Lobanov (GFZ German Research Center for Geosciences, Germany). About one third of the delegates were students, who had the opportunity to present their work to broad international audience. Two workshops focused on gemstone deposits and training in crystallographic com-","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"1-2"},"PeriodicalIF":1.4,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47210758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1