首页 > 最新文献

Journal of Geosciences最新文献

英文 中文
WinMIgob: A Windows program for magnetite-ilmenite geothermometer and oxygen barometer WinMIgob:一个用于磁铁矿地温计和氧气气压计的Windows程序
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-04-07 DOI: 10.3190/JGEOSCI.319
F. Yavuz
A Microsoft® Visual Basic software, called WinMIgob, has been developed for wet-chemical and electron-microprobe compositions of coexisting magnetite–ulvöspinel and ilmenite–hematite solid solutions to calculate the temperature (T, °C) and oxygen fugacity (fO2) conditions of magmatic and metamorphic rocks. The program allows the users to enter total of 34 input variables, including Sample No, SiO2, TiO2, Al2O3, V2O3, Cr2O3, Nb2O3, Fe2O3, FeO, MnO, NiO, ZnO, MgO, CaO, Na2O, K2O, BaO (wt. %) for each magnetite and ilmenite compositional data. WinMIgob enables to enter and load multiple magnetite and ilmenite analyses in the program’s data entry section. Alternatively, the composition of magnetite–ilmenite pairs can be typed in a blank Excel file as in the above order and then loaded into the program’s data entry screen for data processing. The ferric and ferrous iron contents from microprobe-derived total FeO (wt. %) of magnetite–ilmenite compositions are estimated by stoichiometric constraints based on three different approaches. Using the calculated multiple magnetite and ilmenite analyses, WinMIgob estimates molecular (%) and mole fractions of magnetite, uvöspinel, ilmenite and hematite amounts. The program evaluates fourteen magnetite–ilmenite geothermometers, thirteen oxygen barometers and six relative to the nickel–nickel oxide (NNO) buffer values based on the different calibrations with various calculation methods. WinMIgob also allows the users to check if their magnetite–ilmenite pairs taken from rocks are within or departure from the Bacon–Hirschmann Mg/Mn exchange equilibrium line ± 2σ level. This program generates and stores all the calculated results in the Microsoft Excel file (i.e., Output.xlsx), which can be displayed and processed by any other software for further data presentation and graphing purposes. The compiled program code is distributed as a self-extracting setup file, including a help file, test data files and graphic files, which are intended to produce a high-quality printout.
开发了一款名为WinMIgob的Microsoft®Visual Basic软件,用于共存的磁铁矿-ulvö尖晶石和钛铁矿-赤铁矿固溶体的湿化学和电子探针组成,以计算岩浆岩和变质岩的温度(T,°C)和氧逸度(fO2)条件。该程序允许用户为每个磁铁矿和钛铁矿的成分数据输入总共34个输入变量,包括样品号、SiO2、TiO2、Al2O3、V2O3、Cr2O3、Nb2O3、Fe2O3、FeO、MnO、NiO、ZnO、MgO、CaO、Na2O、K2O、BaO(wt.%)。WinMIgob能够在程序的数据输入部分输入和加载多个磁铁矿和钛铁矿分析。或者,磁铁矿-钛铁矿对的组成可以按照上述顺序在空白Excel文件中键入,然后加载到程序的数据输入屏幕中进行数据处理。基于三种不同的方法,通过化学计量约束来估计磁铁矿-钛铁矿组成中微探针衍生的总FeO(wt.%)中的铁和亚铁含量。使用计算的多次磁铁矿和钛铁矿分析,WinMIgob估计了磁铁矿、紫外尖晶石、钛铁矿和赤铁矿的分子(%)和摩尔分数。该程序根据不同的校准和各种计算方法,评估了14个磁铁矿-钛铁矿地热计、13个氧气气压计和6个相对于镍-镍氧化物(NNO)缓冲值。WinMIgob还允许用户检查从岩石中提取的磁铁矿-钛铁矿对是否在Bacon–Hirschmann Mg/Mn交换平衡线±2σ水平之内或之外。该程序生成所有计算结果并将其存储在Microsoft Excel文件(即Output.xlsx)中,该文件可由任何其他软件显示和处理,以用于进一步的数据展示和绘图目的。编译后的程序代码作为自解压设置文件分发,包括帮助文件、测试数据文件和图形文件,旨在生成高质量的打印输出。
{"title":"WinMIgob: A Windows program for magnetite-ilmenite geothermometer and oxygen barometer","authors":"F. Yavuz","doi":"10.3190/JGEOSCI.319","DOIUrl":"https://doi.org/10.3190/JGEOSCI.319","url":null,"abstract":"A Microsoft® Visual Basic software, called WinMIgob, has been developed for wet-chemical and electron-microprobe compositions of coexisting magnetite–ulvöspinel and ilmenite–hematite solid solutions to calculate the temperature (T, °C) and oxygen fugacity (fO2) conditions of magmatic and metamorphic rocks. The program allows the users to enter total of 34 input variables, including Sample No, SiO2, TiO2, Al2O3, V2O3, Cr2O3, Nb2O3, Fe2O3, FeO, MnO, NiO, ZnO, MgO, CaO, Na2O, K2O, BaO (wt. %) for each magnetite and ilmenite compositional data. WinMIgob enables to enter and load multiple magnetite and ilmenite analyses in the program’s data entry section. Alternatively, the composition of magnetite–ilmenite pairs can be typed in a blank Excel file as in the above order and then loaded into the program’s data entry screen for data processing. The ferric and ferrous iron contents from microprobe-derived total FeO (wt. %) of magnetite–ilmenite compositions are estimated by stoichiometric constraints based on three different approaches. Using the calculated multiple magnetite and ilmenite analyses, WinMIgob estimates molecular (%) and mole fractions of magnetite, uvöspinel, ilmenite and hematite amounts. The program evaluates fourteen magnetite–ilmenite geothermometers, thirteen oxygen barometers and six relative to the nickel–nickel oxide (NNO) buffer values based on the different calibrations with various calculation methods. WinMIgob also allows the users to check if their magnetite–ilmenite pairs taken from rocks are within or departure from the Bacon–Hirschmann Mg/Mn exchange equilibrium line ± 2σ level. This program generates and stores all the calculated results in the Microsoft Excel file (i.e., Output.xlsx), which can be displayed and processed by any other software for further data presentation and graphing purposes. The compiled program code is distributed as a self-extracting setup file, including a help file, test data files and graphic files, which are intended to produce a high-quality printout.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"1 1","pages":"51-70"},"PeriodicalIF":1.4,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41637534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Thermal behavior of uranyl selenite minerals derriksite and demesmaekerite 亚硒酸铀酰矿的热行为
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-21 DOI: 10.3190/JGEOSCI.315
V. Gurzhiy, A. Izatulina, M. Krzhizhanovskaya, M. Murashko, D. Spiridonova, V. Shilovskikh, S. Krivovichev
1 Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russian Federation; vladislav.gurzhiy@spbu.ru, vladgeo17@mail.ru 2 Research Centre for X-ray Diffraction Studies, St. Petersburg State University, Universitetskiy ave. 26, St. Petersburg, 198504, Russian Federation 3 Centre for Geo-Environmental Research and Modelling (“Geomodel”), St. Petersburg State University, Ulyanovskaya str. 1, St. Petersburg, 198504, Russian Federation 4 Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184209, Apatity, Russian Federation * Corresponding author
1圣彼得堡国立大学地球科学研究所,俄罗斯圣彼得堡199034;vladislav.gurzhiy@spbu.ru, vladgeo17@mail.ru 2 .圣彼得堡国立大学x射线衍射研究中心,圣彼得堡大学大街26号,圣彼得堡,198504;3 .圣彼得堡国立大学地球环境研究与建模中心(Geomodel),圣彼得堡,乌里扬诺夫斯卡亚大街1号,圣彼得堡,198504;4 .俄罗斯科学院科拉科学中心纳米材料研究中心,Fersmana 14, 184209, Apatity;俄罗斯联邦*通讯作者
{"title":"Thermal behavior of uranyl selenite minerals derriksite and demesmaekerite","authors":"V. Gurzhiy, A. Izatulina, M. Krzhizhanovskaya, M. Murashko, D. Spiridonova, V. Shilovskikh, S. Krivovichev","doi":"10.3190/JGEOSCI.315","DOIUrl":"https://doi.org/10.3190/JGEOSCI.315","url":null,"abstract":"1 Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russian Federation; vladislav.gurzhiy@spbu.ru, vladgeo17@mail.ru 2 Research Centre for X-ray Diffraction Studies, St. Petersburg State University, Universitetskiy ave. 26, St. Petersburg, 198504, Russian Federation 3 Centre for Geo-Environmental Research and Modelling (“Geomodel”), St. Petersburg State University, Ulyanovskaya str. 1, St. Petersburg, 198504, Russian Federation 4 Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184209, Apatity, Russian Federation * Corresponding author","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"249-259"},"PeriodicalIF":1.4,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48313903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The never-ending pursuit of a definitive chemical classification system for granites 对花岗岩化学分类体系的不懈追求
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-21 DOI: 10.3190/JGEOSCI.313
M. García-Arias
Chemical classifications of granites sensu lato have been developed and revisited over decades, but no classification scheme has been universally accepted yet. The more or less known coupled reasons for this apparently impossible task are reviewed here. The main problem is that different granitoids do not fall in distinct categories with sharp boundaries, but comprise a continuous spectrum of rock types both in their chemical and modal compositions. The unifying factor is the minimum-melt nature of the granites sensu stricto, as primary and evolved melts can have a granitic composition. This minimum-melt nature has two consequences, which are the main reasons for the absence of sharp boundaries in every compositional classification system, either modal or chemical. Firstly, the chemistry of granites spreads from the minimum melt to non-minimum compositions, and thus some granites represent a rock series formed by a continuous magmatic evolution, not by discrete steps; secondly, granite series, which are generated from different sources and by several petrogenetic processes, eventually converge at the most silica-rich compositions. There is a relationship between the tectonic scenarios of formation of granites and the chemical overlap that contributes to the absence of a satisfactory chemical classification: the protracted evolution of the tectonic settings following the Wilson cycle and more complicated scenarios change the chemical and modal composition of the granite sources. The overlap in the most silica-rich compositions of the granites s.l. due to the minimum melt nature may extend to more mafic members in a granite series: the closer the sources are in their composition, the greater is the overlap, becoming a second contribution to the lack of sharp boundaries between granite types. The huge efforts to create a satisfactory chemical compositional classification system have actually led to a significant contribution to granite petrology: the discovery of the main chemical differences between granite types, the main chemical parameters (silica content, alkalinity, aluminosity, maficity or FeOt + MgO content, and the Fe/Mg and Na/K ratios) and the petrogenetic processes that cause the change in these parameters. Therefore, despite the lack of agreement over the ‘perfect’ classification system, the investigations have not been fruitless: they have led to the realization that non-genetic classifications are preferable to name the individual rock samples; chemical classification schemes should be left to distinguish magmatic suites and to unravel their prospective petrogenesis and geotectonic setting.
近几十年来,花岗岩感官化学分类不断发展和更新,但至今还没有一个公认的分类方案。对于这个看似不可能完成的任务,我们将在这里回顾一些或多或少为人所知的原因。主要的问题是,不同的花岗岩类并不属于具有明显边界的不同类别,而是在化学和模态组成方面包含连续的岩石类型谱。统一的因素是花岗岩严格意义上的最小熔体性质,因为原生和演化的熔体可能含有花岗岩成分。这种最小熔体的性质有两个后果,这是每种成分分类系统(无论是模态分类还是化学分类)缺乏明确界限的主要原因。首先,花岗岩的化学成分从最小熔融向非最小组成扩展,因此有些花岗岩代表了一个连续的岩浆演化形成的岩石系列,而不是离散的步骤;其次,花岗岩系列的成因不同,经过多次成岩作用,最终汇聚成最富硅成分的花岗岩系列。花岗岩形成的构造情景与化学重叠之间存在关系,这导致了缺乏令人满意的化学分类:威尔逊旋回之后的构造情景的长期演化和更复杂的情景改变了花岗岩来源的化学和模态组成。花岗岩中最富硅成分的重叠(由于熔体性质最小)可能扩展到花岗岩系列中更多的基性成员:在其组成中来源越近,重叠越大,成为花岗岩类型之间缺乏明确界限的第二个原因。为建立一个令人满意的化学成分分类体系所付出的巨大努力,实际上对花岗岩岩石学做出了重大贡献:发现了花岗岩类型之间的主要化学差异,主要化学参数(二氧化硅含量、碱度、铝度、基度或FeOt + MgO含量、Fe/Mg和Na/K比值)以及导致这些参数变化的岩石成因过程。因此,尽管对“完美的”分类系统缺乏共识,但调查并非毫无结果:它们使人们认识到,非遗传分类更适合命名单个岩石样本;应留下化学分类方案来区分岩浆套,并揭示其未来的岩石成因和大地构造背景。
{"title":"The never-ending pursuit of a definitive chemical classification system for granites","authors":"M. García-Arias","doi":"10.3190/JGEOSCI.313","DOIUrl":"https://doi.org/10.3190/JGEOSCI.313","url":null,"abstract":"Chemical classifications of granites sensu lato have been developed and revisited over decades, but no classification scheme has been universally accepted yet. The more or less known coupled reasons for this apparently impossible task are reviewed here. The main problem is that different granitoids do not fall in distinct categories with sharp boundaries, but comprise a continuous spectrum of rock types both in their chemical and modal compositions. The unifying factor is the minimum-melt nature of the granites sensu stricto, as primary and evolved melts can have a granitic composition. This minimum-melt nature has two consequences, which are the main reasons for the absence of sharp boundaries in every compositional classification system, either modal or chemical. Firstly, the chemistry of granites spreads from the minimum melt to non-minimum compositions, and thus some granites represent a rock series formed by a continuous magmatic evolution, not by discrete steps; secondly, granite series, which are generated from different sources and by several petrogenetic processes, eventually converge at the most silica-rich compositions. There is a relationship between the tectonic scenarios of formation of granites and the chemical overlap that contributes to the absence of a satisfactory chemical classification: the protracted evolution of the tectonic settings following the Wilson cycle and more complicated scenarios change the chemical and modal composition of the granite sources. The overlap in the most silica-rich compositions of the granites s.l. due to the minimum melt nature may extend to more mafic members in a granite series: the closer the sources are in their composition, the greater is the overlap, becoming a second contribution to the lack of sharp boundaries between granite types. The huge efforts to create a satisfactory chemical compositional classification system have actually led to a significant contribution to granite petrology: the discovery of the main chemical differences between granite types, the main chemical parameters (silica content, alkalinity, aluminosity, maficity or FeOt + MgO content, and the Fe/Mg and Na/K ratios) and the petrogenetic processes that cause the change in these parameters. Therefore, despite the lack of agreement over the ‘perfect’ classification system, the investigations have not been fruitless: they have led to the realization that non-genetic classifications are preferable to name the individual rock samples; chemical classification schemes should be left to distinguish magmatic suites and to unravel their prospective petrogenesis and geotectonic setting.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44095803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Distribution of Bi in the crystal structure of Bi-rich jamesonite, FePb4 (Sb5.48Bi0.52)Σ6S14 富铋詹姆斯长铁矿FePb4 (Sb5.48Bi0.52)Σ6S14晶体结构中Bi的分布
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-21 DOI: 10.3190/JGEOSCI.312
R. Pažout
Crystal structure of Bi-rich jamesonite, FePb4Sb6S14, from Kutná Hora ore district, Czech Republic was solved from single-crystal X-ray diffraction data to establish whether bismuth shows a preference for any of the three antimony sites in the structure and whether increasing content of the element is placed in one specific site in the structure or is distributed over more sites. Jamesonite is monoclinic, P21/c, with a = 4.0237(3), b = 19.1136(17), c = 15.7813(15) Å, β = 91.799(7)°, V = 1213.10(18) Å3, Z = 2, Dcalc. = 5.7746 g·cm–3. The structural formula derived from the refinement is FePb4(Sb5.48Bi0.52)Σ6S14. The structure refinement (R = 5.22 %) of a needle-like crystal documents that out of three antimony sites in the structure, bismuth shows a preference for Sb1 and Sb3 sites in the lone-electron pair micelle of the [Pb4Sb6S13] substructure motif while the site Sb2 closest to the Fe octahedron is least inclined to accept bismuth. The refinement also reveals that bismuth content is simultaneously distributed over all three antimony sites and that the placement of bismuth first and preferentially into one antimony site does not take place.
利用单晶x射线衍射数据分析了捷克kutn Hora矿区富铋詹姆斯钼矿FePb4Sb6S14的晶体结构,以确定铋在结构中是否优先于三种锑位点中的任何一种,以及增加的元素含量是位于结构中的一个特定位点还是分布在多个位点上。詹姆斯辉石单斜,P21/c, a = 4.0237(3), b = 19.1136(17), c = 15.7813(15) Å, β = 91.799(7)°,V = 1213.10(18) Å3, Z = 2, Dcalc。= 5.7746 g·cm-3。由改进得到的结构式为FePb4(Sb5.48Bi0.52)Σ6S14。针状晶体的结构细化(R = 5.22%)表明,在结构中的三个锑位中,铋偏爱[Pb4Sb6S13]亚结构基序的单电子对胶束中的Sb1和Sb3位,而最靠近Fe八面体的Sb2位最不倾向于接受铋。精化还表明,铋含量同时分布在所有三个锑位点上,并且铋优先放置在一个锑位点上的情况没有发生。
{"title":"Distribution of Bi in the crystal structure of Bi-rich jamesonite, FePb4 (Sb5.48Bi0.52)Σ6S14","authors":"R. Pažout","doi":"10.3190/JGEOSCI.312","DOIUrl":"https://doi.org/10.3190/JGEOSCI.312","url":null,"abstract":"Crystal structure of Bi-rich jamesonite, FePb4Sb6S14, from Kutná Hora ore district, Czech Republic was solved from single-crystal X-ray diffraction data to establish whether bismuth shows a preference for any of the three antimony sites in the structure and whether increasing content of the element is placed in one specific site in the structure or is distributed over more sites. Jamesonite is monoclinic, P21/c, with a = 4.0237(3), b = 19.1136(17), c = 15.7813(15) Å, β = 91.799(7)°, V = 1213.10(18) Å3, Z = 2, Dcalc. = 5.7746 g·cm–3. The structural formula derived from the refinement is FePb4(Sb5.48Bi0.52)Σ6S14. The structure refinement (R = 5.22 %) of a needle-like crystal documents that out of three antimony sites in the structure, bismuth shows a preference for Sb1 and Sb3 sites in the lone-electron pair micelle of the [Pb4Sb6S13] substructure motif while the site Sb2 closest to the Fe octahedron is least inclined to accept bismuth. The refinement also reveals that bismuth content is simultaneously distributed over all three antimony sites and that the placement of bismuth first and preferentially into one antimony site does not take place.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42826981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geochronological constraints on the carbonate-sulfarsenide veins in Dobšiná, Slovakia: U/Pb ages of hydrothermal carbonates, Re/Os age of gersdorffite, and K/Ar ages of fuchsite 斯洛伐克Dobšiná碳酸盐-硫代硫化物脉的年代学约束:热液碳酸盐U/Pb年龄、革斯多辉石Re/Os年龄和复辉石K/Ar年龄
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-21 DOI: 10.3190/JGEOSCI.314
S. Kiefer, M. Števko, R. Vojtko, D. Ozdín, A. Gerdes, R. Creaser, M. Szczerba, J. Majzlan
1 Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D–07749 Jena, Germany; email: stefan.kiefer@uni-jena.de 2 Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia 3 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-19300 Praha 9, Czech Republic 4 Department of Geology and Palaeontology, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia 5 Department of Mineralogy and Petrology, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia 6 Department of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, D-60438 Frankfurt, Germany 7 Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Germany 8 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 9 Institute of Geological Sciences, Polish Academy of Sciences, ul. Senacka 1, 31-002 Krakow, Poland * Corresponding author
1德国弗里德里希-席勒大学地球科学研究所,德国耶拿D-07749;电子邮件:stefan.kiefer@uni-jena.de 2斯洛伐克科学院地球科学研究所,Dúbravská cesta 9,840 05斯洛伐克布拉迪斯拉发3捷克国立博物馆,cirkusov 1740, CZ-19300布拉格9捷克共和国4夸美纽斯大学地质与古生物学系,伊尔科维 ova 6, SK-842 15布拉迪斯拉发5夸美纽斯大学矿物与岩石学系,伊尔科维 ova 6, SK-842 15布拉迪斯拉发6地球科学系,斯洛伐克布拉迪斯拉发法兰克福歌德大学,Altenhöferallee 1, D-60438德国法兰克福7德国法兰克福歌德大学法兰克福同位素与元素研究中心(FIERCE) 8加拿大阿尔伯塔大学地球与大气科学系,埃德蒙顿,加拿大阿尔伯塔T6G 2E3 9波兰科学院地质科学研究所,ul。Senacka 1, 31-002波兰克拉科夫*通讯作者
{"title":"Geochronological constraints on the carbonate-sulfarsenide veins in Dobšiná, Slovakia: U/Pb ages of hydrothermal carbonates, Re/Os age of gersdorffite, and K/Ar ages of fuchsite","authors":"S. Kiefer, M. Števko, R. Vojtko, D. Ozdín, A. Gerdes, R. Creaser, M. Szczerba, J. Majzlan","doi":"10.3190/JGEOSCI.314","DOIUrl":"https://doi.org/10.3190/JGEOSCI.314","url":null,"abstract":"1 Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D–07749 Jena, Germany; email: stefan.kiefer@uni-jena.de 2 Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia 3 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-19300 Praha 9, Czech Republic 4 Department of Geology and Palaeontology, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia 5 Department of Mineralogy and Petrology, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia 6 Department of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, D-60438 Frankfurt, Germany 7 Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Germany 8 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 9 Institute of Geological Sciences, Polish Academy of Sciences, ul. Senacka 1, 31-002 Krakow, Poland * Corresponding author","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42735394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The enigma of cuboid diamonds: the causes of inverse distribution of optical centers within the growth zones 长方体钻石之谜:生长区内光学中心反向分布的原因
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-03 DOI: 10.3190/jgeosci.301
E. Vasilev, D. Zedgenizov, I. Klepikov
In the present work, diamonds with yellow cores and a slightly colored or colorless rims have been studied. Three groups of crystals that differ in spectroscopic features have been identified. In the crystals of the first group, the heterogeneity in color is due to the variation in nitrogen concentration, which is present as the simplest low-temperature nitrogen С center. Absorption spectra of the first group display peaks at wavenumbers 1344 and 1332 cm–1 of С and С+ centers, respectively. The second group also exhibits higher nitrogen concentrations in the form of C centers in the colored zone. However, the concentration of nitrogen in the form of high temperature А-centers, and the total nitrogen content is higher at the periphery of crystals. The FTIR absorption spectra of this group display both 1344 and 1332 cm–1 peaks. Crystals of the third group do not contain C centers. The 1332 cm–1 and the A center bands are observed in the FTIR absorption spectra. In the photoluminescence spectra of the colored zone of the third group, the bands S1 and S2 have been found and the doublet lines 883 and 885 nm of the simplest Ni-containing centers. Previously unobserved systems with zerophonon lines at 799.5, 819.6, 869.5 and 930 nm lines have been registered in the photoluminescence spectra of the third group under 787 nm excitation. It is hereby proposed that this luminescence is due to Ni-containing centers. In the third group of crystals, Ni seems to stabilize C+ centers and hence the coloring of crystal zones is consistent with Ni impurity distribution. Crystals of each group have distinct sources: the first group is from Yubileinaya pipe, the second from the placers of North Yakutia with unknown primary sources and the third from the Uralian deposits.
在目前的工作中,研究了具有黄色核和微色或无色边缘的钻石。已经确定了光谱特征不同的三组晶体。在第一类晶体中,颜色的不均一性是由于氮浓度的变化,氮以最简单的低温氮С中心存在。第一组吸收光谱分别在С和С+中心的1344和1332 cm-1波数处显示出峰值。第二组在色区也以C中心的形式显示出较高的氮浓度。但氮的浓度以高温形式存在А-centers,且总氮含量在晶体外围较高。该基团的FTIR吸收光谱显示1344和1332 cm-1峰。第三族晶体不含C中心。在FTIR吸收光谱中观察到1332 cm-1和A中心带。在第三族有色区的光致发光光谱中,发现了S1和S2波段以及最简单含镍中心的883和885 nm的双线线。在787 nm激发下,在第三族的光致发光光谱中记录了先前未观测到的在799.5、819.6、869.5和930 nm线处具有零声线的体系。据此提出,这种发光是由于含镍中心。在第三组晶体中,Ni似乎稳定了C+中心,因此晶体区域的颜色与Ni杂质分布一致。每一组的晶体都有不同的来源:第一组来自Yubileinaya管道,第二组来自北雅库特的砂矿,原始来源未知,第三组来自乌拉利亚矿床。
{"title":"The enigma of cuboid diamonds: the causes of inverse distribution of optical centers within the growth zones","authors":"E. Vasilev, D. Zedgenizov, I. Klepikov","doi":"10.3190/jgeosci.301","DOIUrl":"https://doi.org/10.3190/jgeosci.301","url":null,"abstract":"In the present work, diamonds with yellow cores and a slightly colored or colorless rims have been studied. Three groups of crystals that differ in spectroscopic features have been identified. In the crystals of the first group, the heterogeneity in color is due to the variation in nitrogen concentration, which is present as the simplest low-temperature nitrogen С center. Absorption spectra of the first group display peaks at wavenumbers 1344 and 1332 cm–1 of С and С+ centers, respectively. The second group also exhibits higher nitrogen concentrations in the form of C centers in the colored zone. However, the concentration of nitrogen in the form of high temperature А-centers, and the total nitrogen content is higher at the periphery of crystals. The FTIR absorption spectra of this group display both 1344 and 1332 cm–1 peaks. Crystals of the third group do not contain C centers. The 1332 cm–1 and the A center bands are observed in the FTIR absorption spectra. In the photoluminescence spectra of the colored zone of the third group, the bands S1 and S2 have been found and the doublet lines 883 and 885 nm of the simplest Ni-containing centers. Previously unobserved systems with zerophonon lines at 799.5, 819.6, 869.5 and 930 nm lines have been registered in the photoluminescence spectra of the third group under 787 nm excitation. It is hereby proposed that this luminescence is due to Ni-containing centers. In the third group of crystals, Ni seems to stabilize C+ centers and hence the coloring of crystal zones is consistent with Ni impurity distribution. Crystals of each group have distinct sources: the first group is from Yubileinaya pipe, the second from the placers of North Yakutia with unknown primary sources and the third from the Uralian deposits.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"59-70"},"PeriodicalIF":1.4,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48567050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A new solvothermal approach to obtain nanoparticles in the Cu3SnS4-Cu2FeSnS4 join 一种新的溶剂热法制备Cu3SnS4-Cu2FeSnS4纳米颗粒的方法
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-03 DOI: 10.3190/jgeosci.300
A. Giaccherini, A. Griesi, G. Montegrossi, M. Romanelli, G. Lepore, A. Lavacchi, G. Amthauer, G. Redhammer, G. Tippelt, S. Martinuzzi, G. Cucinotta, M. Mannini, A. Caneschi, F. Benedetto
1 Dept. of Industrial Engineering, University of Florence, via di Santa Marta 3, 50100 Firenze, Italy 2 Center of Nanotechnology @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56100 Pisa, Italy 3 Institute of Geosciences and Earth Resources, CNR, via G. La Pira, 4, 50124 Firenze, Italy 4 Dept. of Earth Sciences, University of Florence, via G. La Pira 4, 50124 Firenze, Italy; francesco.dibenedetto@unifi.it 5 Operative Group in Grenoble, Istituto di Officina dei Materiali, CNR, c/o European Synchrotron Radiation Facility (ESRF), avenue des Martyrs, 71, 38100 Grenoble, France 6 Institute for the Chemistry of OrganoMetallic Compounds, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy 7 Dept. of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2, 5020 Salzburg, Austria 8 Dept. of Chemistry, University of Florence, via della lastruccia 3, 50019 Sesto Fiorentino, Italy * Corresponding author
1佛罗伦萨大学工业工程系,意大利圣玛尔塔大道350100佛罗伦萨2意大利技术研究所纳米技术研究中心,意大利圣西尔维斯特罗广场1256100比萨3中国北车地球科学与地球资源研究所,意大利拉皮拉大道450124佛罗伦萨4佛罗伦萨大学地球科学系,意大利拉皮拉大道450124佛罗伦萨;francesco.dibenedetto@unifi.it 5法国科学院材料研究所格勒诺布尔研究组,法国格勒诺布尔烈士大道71,38100;6法国科学院有机金属化合物化学研究所,via圣母钢琴学院10,50019意大利塞斯托·费奥伦蒂诺;7奥地利萨尔茨堡大学材料化学与物理学系,雅各布-哈林格-斯特拉斯埃25,5020;8佛罗伦萨大学化学系;意大利Sesto Fiorentino *通讯作者
{"title":"A new solvothermal approach to obtain nanoparticles in the Cu3SnS4-Cu2FeSnS4 join","authors":"A. Giaccherini, A. Griesi, G. Montegrossi, M. Romanelli, G. Lepore, A. Lavacchi, G. Amthauer, G. Redhammer, G. Tippelt, S. Martinuzzi, G. Cucinotta, M. Mannini, A. Caneschi, F. Benedetto","doi":"10.3190/jgeosci.300","DOIUrl":"https://doi.org/10.3190/jgeosci.300","url":null,"abstract":"1 Dept. of Industrial Engineering, University of Florence, via di Santa Marta 3, 50100 Firenze, Italy 2 Center of Nanotechnology @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56100 Pisa, Italy 3 Institute of Geosciences and Earth Resources, CNR, via G. La Pira, 4, 50124 Firenze, Italy 4 Dept. of Earth Sciences, University of Florence, via G. La Pira 4, 50124 Firenze, Italy; francesco.dibenedetto@unifi.it 5 Operative Group in Grenoble, Istituto di Officina dei Materiali, CNR, c/o European Synchrotron Radiation Facility (ESRF), avenue des Martyrs, 71, 38100 Grenoble, France 6 Institute for the Chemistry of OrganoMetallic Compounds, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy 7 Dept. of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2, 5020 Salzburg, Austria 8 Dept. of Chemistry, University of Florence, via della lastruccia 3, 50019 Sesto Fiorentino, Italy * Corresponding author","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"3-14"},"PeriodicalIF":1.4,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43721948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A feasibility investigation of speciation by Fe K-edge XANES using a laboratory X-ray absorption spectrometer 利用实验室x射线吸收光谱仪研究Fe - K-edge XANES形成物种的可行性
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-03 DOI: 10.3190/jgeosci.299
L. Mottram, Samuel Cafferkey, Amber R. Mason, T. Oulton, Shiyin Sun, D. Bailey, M. Stennett, N. Hyatt
We demonstrate effective speciation of Fe in model compounds from analysis of the weak pre-edge features in Fe K-edge XANES spectra, with a commercially available laboratory X-ray spectrometer, using a spherically bent crystal analyser and a low-power X-ray tube, in Rowland circle geometry. Direct comparison with XANES data acquired from a third generation synchrotron bending magnet beamline, using the same specimens, validated quantitative agreement in determination of the total integrated intensity and centroid position of the pre-edge feature, which are a probe of the electronic configuration and symmetry of the absorber atom, and hence oxidation state and co-ordination number. This work opens the door to rapid and routine speciation studies of Fe by laboratory XANES, even for materials with relatively dilute absorber concentration of only a few mol. %.
通过分析铁k边XANES光谱的弱前边缘特征,我们证明了铁在模型化合物中的有效形态,使用商用实验室x射线光谱仪,使用球形弯曲晶体分析仪和低功率x射线管,在罗兰圆几何中。直接比较从第三代同步加速器弯曲磁体束线获得的XANES数据,使用相同的样品,验证了在确定总积分强度和前边缘特征质心位置方面的定量一致性,这是对吸收原子的电子构型和对称性的探测,因此氧化态和配位数。这项工作为实验室XANES快速和常规的铁形态研究打开了大门,即使是相对较稀的吸收剂浓度只有几个mol. %的材料。
{"title":"A feasibility investigation of speciation by Fe K-edge XANES using a laboratory X-ray absorption spectrometer","authors":"L. Mottram, Samuel Cafferkey, Amber R. Mason, T. Oulton, Shiyin Sun, D. Bailey, M. Stennett, N. Hyatt","doi":"10.3190/jgeosci.299","DOIUrl":"https://doi.org/10.3190/jgeosci.299","url":null,"abstract":"We demonstrate effective speciation of Fe in model compounds from analysis of the weak pre-edge features in Fe K-edge XANES spectra, with a commercially available laboratory X-ray spectrometer, using a spherically bent crystal analyser and a low-power X-ray tube, in Rowland circle geometry. Direct comparison with XANES data acquired from a third generation synchrotron bending magnet beamline, using the same specimens, validated quantitative agreement in determination of the total integrated intensity and centroid position of the pre-edge feature, which are a probe of the electronic configuration and symmetry of the absorber atom, and hence oxidation state and co-ordination number. This work opens the door to rapid and routine speciation studies of Fe by laboratory XANES, even for materials with relatively dilute absorber concentration of only a few mol. %.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"27-35"},"PeriodicalIF":1.4,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44256066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Molecular structure of the arsenate mineral chongite from Jáchymov – a vibrational spectroscopy study Jáchymov砷酸盐矿物重晶石的分子结构——振动光谱研究
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-02 DOI: 10.3190/JGEOSCI.292
J. Sejkora, J. Plášil, J. Čejka, Z. Dolníček, R. Pavlíček
We have undertaken a study of the arsenate mineral chongite from the second world occurrence, which is Jáchymov (Czech Republic). Chongite occurs as colourless to white crystalline spherical and hemispherical aggregates up to 0.3 mm across composed of rich crusts on strongly weathered fragments of rocks and gangue. The chemical composition of chongite agrees well with the general stoichiometry of the hureaulite group of minerals and corresponds to the following empirical formula: Ca1.00(Mg1.24Ca0.69 0.06Mn0.01)Σ2.00Ca2.00[(AsO3OH)2.13(AsO4)1.84(PO4)0.03]Σ4.00·4H2O. Chongite is monoclinic, space group C2/c, with the unit-cell parameters refined from X-ray powder diffraction data: a 18.618(5), b 9.421(2), c 9.988(2) Å, β 96.86(2)o and V 1739.4(7) Å3. Raman bands at 3456, 3400, 3194 cm–1 and infrared bands at 3450, 3348, 3201 and 3071 cm–1 are assigned to the ν OH stretching structurally distinct differently hydrogen bonded water molecules. Raman bands at 2887, 2416 cm–1 and infrared bands at 2904, 2783 cm–1 are connected to ν OH stretching in hydrogen bonded (AsO3OH) units. Raman bands at 1656, 1578 cm–1 and infrared bands at 1652, 1601 cm–1 are assigned to the ν2 (δ) H2O bending vibrations of structurally distinct hydrogen bonded water molecules bonded in the structure by H-bonds of various strength. A Raman band at 1284 cm–1 and infrared bands at 1091 and 1061 cm–1 may be connected to the δ As–OH bending vibrations. The most prominent Raman bands at 902, 861, 828, 807, 758 cm–1 and infrared bands at 932, 899, 863, 815, 746 cm–1 are attributed to overlapping ν1 (AsO4) symmetric stretching, ν3 (AsO4) antisymmetric stretching, ν1 (AsO3OH) symmetric stretching, and ν3 (AsO3OH) antisymmetric stretching vibrations. Raman band at 693 cm–1 and infrared bands at 721, 634 cm–1 are assigned to δ AsOH bend and molecular water libration modes. Raman bands 506, 469, 451, 436 cm–1 and infrared bands at 503, 466 and 417 cm–1 are connected with the ν4 (δ) (AsO4) and (HOAsO3) bending vibrations. Raman bands at 389, 360, 346 and 302 cm–1 are related to the ν2 (δ) (AsO4) and (HOAsO3) bending vibrations. Raman bands at 275 and 238 cm–1 are assigned to the ν (OH⋅⋅⋅O) stretching vibrations and those at 190, 162, 110, 100 and 75 cm–1 to lattice modes.
我们对来自第二世界的砷酸盐矿物重晶石进行了研究,该矿物为Jáchymov(捷克共和国)。重晶石以无色至白色结晶球形和半球状聚集体的形式出现,直径可达0.3mm,由强风化岩石和脉石碎片上的富结壳组成。重晶石的化学组成与水铝石矿物群的一般化学计量非常一致,并对应于以下经验公式:Ca1.00(Mg1.24Ca0.69 0.06Mn0.01)∑2.00Ca2.00[(AsO3OH)2.13(AsO4)1.84(PO4)0.03]∑4.00·4H2O。重晶石为单斜晶系,空间群C2/c,晶胞参数从X射线粉末衍射数据中提炼:a 18.618(5),b 9.421(2),c 9.988(2)Å、β96.86(2)o和V 1739.4(7)Å3。3456、3400、3194 cm–1处的拉曼光谱带和3450、3348、3201和3071 cm–1的红外光谱带被归属于结构上不同的氢键水分子。2887、2416 cm–1处的拉曼光谱带和2904、2783 cm–1的红外光谱带与氢键(AsO3OH)单元中的ΓOH伸缩有关。1656、1578 cm–1处的拉曼光谱和1652、1601 cm–1的红外光谱归属于通过不同强度的氢键结合在结构中的结构不同的氢键水分子的Γ2(δ)H2O弯曲振动。1284 cm–1处的拉曼带以及1091和1061 cm–1的红外带可能与δAs–OH弯曲振动有关。902、861、828、807、758 cm–1处最突出的拉曼光谱带和932、899、863、815、746 cm–l处的红外光谱带归因于重叠的Γ1(AsO4)对称拉伸、Γ3(AsO4)反对称拉伸、Ⅶ1(AsO3OH)对称拉伸和Γ3。693 cm–1处的拉曼光谱和721634 cm–1的红外光谱归属于δAsOH弯曲和分子水振动模式。拉曼光谱506、469、451、436 cm–1和503、466和417 cm–2处的红外光谱与γ4(δ)(AsO4)和(HOAsO3)弯曲振动有关。389、360、346和302 cm–1处的拉曼光谱与γ2(δ)(AsO4)和(HOAsO3)弯曲振动有关。275和238 cm–1处的拉曼谱带归属于Γ(OH‧‧‧‧O)拉伸振动,190、162、110、100和75 cm–1的拉曼谱线归属于晶格模式。
{"title":"Molecular structure of the arsenate mineral chongite from Jáchymov – a vibrational spectroscopy study","authors":"J. Sejkora, J. Plášil, J. Čejka, Z. Dolníček, R. Pavlíček","doi":"10.3190/JGEOSCI.292","DOIUrl":"https://doi.org/10.3190/JGEOSCI.292","url":null,"abstract":"We have undertaken a study of the arsenate mineral chongite from the second world occurrence, which is Jáchymov (Czech Republic). Chongite occurs as colourless to white crystalline spherical and hemispherical aggregates up to 0.3 mm across composed of rich crusts on strongly weathered fragments of rocks and gangue. The chemical composition of chongite agrees well with the general stoichiometry of the hureaulite group of minerals and corresponds to the following empirical formula: Ca1.00(Mg1.24Ca0.69 0.06Mn0.01)Σ2.00Ca2.00[(AsO3OH)2.13(AsO4)1.84(PO4)0.03]Σ4.00·4H2O. Chongite is monoclinic, space group C2/c, with the unit-cell parameters refined from X-ray powder diffraction data: a 18.618(5), b 9.421(2), c 9.988(2) Å, β 96.86(2)o and V 1739.4(7) Å3. Raman bands at 3456, 3400, 3194 cm–1 and infrared bands at 3450, 3348, 3201 and 3071 cm–1 are assigned to the ν OH stretching structurally distinct differently hydrogen bonded water molecules. Raman bands at 2887, 2416 cm–1 and infrared bands at 2904, 2783 cm–1 are connected to ν OH stretching in hydrogen bonded (AsO3OH) units. Raman bands at 1656, 1578 cm–1 and infrared bands at 1652, 1601 cm–1 are assigned to the ν2 (δ) H2O bending vibrations of structurally distinct hydrogen bonded water molecules bonded in the structure by H-bonds of various strength. A Raman band at 1284 cm–1 and infrared bands at 1091 and 1061 cm–1 may be connected to the δ As–OH bending vibrations. The most prominent Raman bands at 902, 861, 828, 807, 758 cm–1 and infrared bands at 932, 899, 863, 815, 746 cm–1 are attributed to overlapping ν1 (AsO4) symmetric stretching, ν3 (AsO4) antisymmetric stretching, ν1 (AsO3OH) symmetric stretching, and ν3 (AsO3OH) antisymmetric stretching vibrations. Raman band at 693 cm–1 and infrared bands at 721, 634 cm–1 are assigned to δ AsOH bend and molecular water libration modes. Raman bands 506, 469, 451, 436 cm–1 and infrared bands at 503, 466 and 417 cm–1 are connected with the ν4 (δ) (AsO4) and (HOAsO3) bending vibrations. Raman bands at 389, 360, 346 and 302 cm–1 are related to the ν2 (δ) (AsO4) and (HOAsO3) bending vibrations. Raman bands at 275 and 238 cm–1 are assigned to the ν (OH⋅⋅⋅O) stretching vibrations and those at 190, 162, 110, 100 and 75 cm–1 to lattice modes.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"1-10"},"PeriodicalIF":1.4,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45481024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina 阿根廷Capillitas矿Nueva Esperanza和Restauradora矿脉的含铟共生
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-08-07 DOI: 10.3190/jgeosci.304
M. F. Márquez-Zavalía, A. Vymazalová, M. A. Galliski, Yasushi Watanabe, H. Murakami
1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; mzavalia@mendoza-conicet.gov.ar 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author
[1]李建平,李建平,李建平,李建平。A. Ruiz Leal s/n, Parque San Martin, CC330,阿根廷门多萨(5500);mzavalia@mendoza-conicet.gov.ar 2 Mineralogía y Petrología, FAD,国立凯约大学,中央大学(5502)门多萨,阿根廷3捷克地质调查局岩石地球化学系,布拉格6 152000 5捷克共和国4秋田大学矿业博物馆国际资源科学学院,28-2,秋田县,Tegata,大泽,010-8502日本5煤炭业务计划组,煤炭业务办公室,资源与电力公司,JXTG日本石油能源公司,1-2,日本东京千代田区大手町1- home, 100-8162 *通讯作者
{"title":"Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina","authors":"M. F. Márquez-Zavalía, A. Vymazalová, M. A. Galliski, Yasushi Watanabe, H. Murakami","doi":"10.3190/jgeosci.304","DOIUrl":"https://doi.org/10.3190/jgeosci.304","url":null,"abstract":"1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; mzavalia@mendoza-conicet.gov.ar 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"97-109"},"PeriodicalIF":1.4,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48180792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Journal of Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1