Immune checkpoint inhibitors are increasingly being utilized for the treatment of advanced neoplastic disease and have been associated with wide-ranging cutaneous adverse effects. Though exceedingly rare, eruptive keratoacanthomas have been associated with the use of immune checkpoint inhibitors such as pembrolizumab and nivolumab, whose molecular target is the programmed cell death protein 1. Herein, we detail a case of numerous eruptive keratoacanthomas arising in a patient one month after initiation of nivolumab for recurrent metastatic oropharyngeal squamous cell carcinoma. Treatment with multiple rounds of intralesional corticosteroids and a several-month course of oral acitretin resulted in partial improvement. Subsequent treatment with intralesional 5-fluorouracil demonstrated near-complete resolution of the keratoacanthomas without discontinuation of nivolumab. Although eruptive keratoacanthomas secondary to immune checkpoint inhibitors are exceptionally rare, physicians should be aware of this cutaneous adverse effect as their use becomes more widespread.
In the tumor microenvironment, wherein cytotoxic lymphocytes interact with cancer cells, lymphocyte exhaustion, an immune checkpoint inhibitor target, is promoted. However, the efficacy of these inhibitors is limited, and improving response rates remains challenging. We previously reported that protein tyrosine phosphatase nonreceptor type (PTPN) 3 is a potential immune checkpoint molecule for activated lymphocytes and that PTPN3 inhibition should be a focus area for cancer immunotherapy development. Therefore, in this study, we focused on PTPN3-suppressive therapy in terms of lymphocyte exhaustion under hypoxic conditions, which are a cancer microenvironment, and investigated measures for improving the response to anti-programmed death receptor (PD)-1 antibody drugs. We found that PTPN3 expression was upregulated in activated lymphocytes under hypoxic conditions, similar to the findings for other immune checkpoint molecules, such as PD-1, T cell immunoglobulin mucin-3, and lymphocyte-activation gene-3; furthermore, it functioned as a lymphocyte exhaustion marker. In addition, PTPN3-suppressed activated lymphocytes promoted the mammalian target of rapamycin (mTOR)-Akt signaling pathway activation and enhanced proliferation, migration, and cytotoxic activities under hypoxic conditions. Furthermore, PTPN3 suppression in activated lymphocytes increased PD-1 expression and enhanced the antitumor effects of anti-PD-1 antibody drugs against head and neck cancer in vitro and in vivo. These results suggest that the suppression of PTPN3 expression in activated lymphocytes enhances the therapeutic effect of anti-PD-1 antibody drugs in head and neck cancer, especially under hypoxic conditions that cause lymphocyte exhaustion.
The chimeric antigen receptor (CAR) T-cell therapy in solid epithelial tumors has been explored, however, with limited success. As much of the preclinical work has relied on xenograft models in immunocompromised animals, the immune-related efficacies and toxicities may have been missed. In this study, we engineered syngeneic murine CAR T cells targeting the tumor form of human mucin-1 (tMUC1) and tested the MUC1 CAR T cells' efficacy and toxicity in the immunocompetent human MUC1-expressing mouse models. The MUC1 CAR T cells significantly eliminated murine pancreatic and breast cancer cell lines in vitro. In vivo, MUC1 CAR T cells significantly slowed the mammary gland tumor progression in the spontaneous PyVMT×MUC1.Tg (MMT) mice, prevented lung metastasis, and prolonged survival. Most importantly, there was minimal short or long-term toxicity with acceptable levels of transient liver toxicity but no kidney toxicity. In addition, the mice did not show any signs of weight loss or other behavioral changes with the treatment. We also report that a single dose of MUC1 CAR T-cell treatment modestly reduced the pancreatic tumor burden in a syngeneic orthotopic model of pancreatic ductal adenocarcinoma given at late stage of an established tumor. Taken together, these findings suggested the further development of tMUC1-targeted CAR T cells as an effective and relatively safe treatment modality for various tMUC1-expressing solid tumors.
Gastric cancer is the most common type of gastrointestinal cancer in China which about 80% of patients are locally advanced or advanced when diagnosed. Surgery along brings high recurrence rate for locally advanced gastric cancer (LAGC), and neoadjuvant therapies are needed. The use of programmed cell death-1 (PD-1)/programmed death-ligand 1 inhibitor nowadays improved the disease-free survival for LAGC, however, only <35% of patients achieved pathologic complete response (pCR) after neoadjuvant therapy nowadays. Therefore, new regimens are needed to be investigated. Gastric artery chemoembolization is applied to metastasis gastric cancer and researches showed interventional therapy can enhance the antitumor effect of PD-1 inhibitor. Here, for the first time, we combined gastric artery chemoembolization with tislelizumab (a PD-1 inhibitor) for neoadjuvant therapy of a patient with LAGC. The patient achieved pCR after a D2 resection and tumor regression grade score was 1. After surgery, the patient received tislelizumab 200 mg per 3 weeks, and showed no sign of recurrence after 6 months of follow-up. The study indicated the use of tislelizumab and gastric artery chemoembolization for neoadjuvant therapy may bring a better pCR rate and prognosis of LAGC.
Tumor-associated macrophages (TAMs) are highly infiltrated in the tumor microenvironment (TME) of colorectal cancer (CRC) and play a vital role in CRC's development as well as prognosis. The required data were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas. Univariate Cox regression and least absolute shrinkage operator analyses were executed for model construction. TME assessment and immune prediction were performed using the ESTIMATE software package and the single sample genome enrichment analysis algorithm. The results show patients with low a TAMs risk score (TRS) had a better prognosis in both The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Patients with low TRS were more sensitive to 3 chemotherapeutic agents: oxaliplatin, paclitaxel, and cisplatin ( P <0.05). TME assessment showed that the low TRS group had less infiltration of M2 macrophages and regulatory T cells, but CD4 + T cells, NK cells, and dendritic cells occupy a greater proportion of TME. Low TRS group patients have a low StromalScore and ImmuneScore but have high TumorPurity. The immune checkpoint TIM-3 gene HAVCR2 expression was significantly higher in the high TRS group. Finally, we created a nomogram including TRS for forecasting survival, and TRS was significantly associated with the clinical stage of the patients. In conclusion, the TRS serves as a reliable prognostic indicator of CRC; it predicts patient outcomes to immunotherapy and chemotherapy and provides genomic evidence for the subsequent development of modulated TAMs for treating CRC.
Adoptive transfer of ex vivo expanded tumor-infiltrating lymphocytes (TILs) have produced long-term response in metastatic cancers. TILs have traditionally been expanded from surgically resected specimens. Ultrasound-guided core needle biopsy (CNB) is an alternative method that avoids the morbidity of surgery and have added benefits which may include patients not amenable to surgery as well as the potential to produce TILs from multiple lesions in the same patient. We assessed the ability to produce and expand TILs from primary triple-negative breast cancer tumors from CNB (n=7) and demonstrate comparable expansion, phenotype and cytokine secretion after phorbol myristate acetate-ionomycin stimulation to TILs expanded from surgery (n=6). T cell Receptor clonality and diversity were also comparable between the two cohorts throughout the TIL culture. CNB is a safe and feasible method to obtain tumor tissue for TIL generation in patients with triple-negative breast cancer.
Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.
Myeloid-derived suppressor cells (MDSC) are powerful immunomodulatory cells that play an important role in infectious and inflammatory disorders, but the correlation between graft MDSC amount and early transplant outcomes remains unknown in allogeneic hematopoietic stem cell transplantation. We collected data from 91 patients with acute leukemia undergoing haploidentical allogeneic hematopoietic stem cell transplantation. The grafts were analyzed in terms of CD34+ cells, CD3+ T cells and subpopulation, and MDSC (HLA-DR -/low CD33 + CD16 - ) by flow cytometry. The cutoff value of the MDSC proportion in the graft on the receiver operating curve was 8.89%, with a sensitivity of 0.833 and specificity of 0.852. Day +100 cumulative incidences of II-IV and III-IV acute graft-versus-host disease (aGVHD) in the low MDSC group were 73.5% and 38.8%, respectively, and that in the high MDSC group were 5.3% and 0%, with a significant difference in incidences of II-IV and III-IV aGVHD ( P <0.001). The overall survival, relapse-free survival, and GVHD-relapse-free survival (GRFS) at 1 year were 66.3% versus 80.5% ( P =0.043), 71.6% versus 71.7% ( P =0.248), and 22.1% versus 62.8% ( P <0.001), respectively. No significant difference in the cumulative incidence of relapse between the 2 groups was observed. Multivariate analysis revealed that higher MDSC proportions were associated with a lower risk of II-IV aGVHD. Graft MDSC proportion exceeding 8.89% was significantly associated with higher overall survival and GRFS. The prophylaxis of antithymocyte globulin+post-transplant cyclophosphamide and higher MDSC proportion in the graft were favorable factors for improving GRFS. In conclusion, graft MDSC proportion may be a significant predictor of aGVHD.