Pub Date : 2024-10-26DOI: 10.1021/acsnano.4c1284910.1021/acsnano.4c12849
Hongwei Tang, Kexin Wan, Kang Zhang, Ao Wang, Mingkun Wang, Juan Xie, Pengcheng Su, Huilong Dong*, Jingyu Sun* and Yihui Li*,
Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the C═N group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.
插层工程是促进层状阴极锌离子存储的一种前景广阔的策略;然而,由于复杂的制造路线和插层剂的惰性电化学行为,这一策略受到了阻碍。本文提出了一种有机咪唑插层策略,采用 V2O5 和 NH4V3O8(NVO)模型材料来验证咪唑插层剂在提高钒基阴极锌存储能力方面的可行性。插层的咪唑分子不仅可以作为额外的 "支柱 "扩大层间间距并增强结构稳定性,还可以通过 Zn2+ 与 C═N 基团之间的配位反应为锌储存提供额外的配位位点。这就产生了一种双模式离子存储机制和良好的电化学性能。因此,在 20 A g-1 的条件下循环 5000 次后,咪唑夹杂的 V2O5 可输出 179.9 mAh g-1 的容量;而在 2 A g-1 的条件下循环 700 次后,咪唑夹杂的 NVO 可输出 170.2 mAh g-1 的高容量。这项工作有望提高钒基阴极在锌离子水电池中的应用潜力。
{"title":"Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation","authors":"Hongwei Tang, Kexin Wan, Kang Zhang, Ao Wang, Mingkun Wang, Juan Xie, Pengcheng Su, Huilong Dong*, Jingyu Sun* and Yihui Li*, ","doi":"10.1021/acsnano.4c1284910.1021/acsnano.4c12849","DOIUrl":"https://doi.org/10.1021/acsnano.4c12849https://doi.org/10.1021/acsnano.4c12849","url":null,"abstract":"<p >Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V<sub>2</sub>O<sub>5</sub> and NH<sub>4</sub>V<sub>3</sub>O<sub>8</sub> (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn<sup>2+</sup> and the C═N group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V<sub>2</sub>O<sub>5</sub> delivers a capacity of 179.9 mAh g<sup>–1</sup> after 5000 cycles at 20 A g<sup>–1</sup>, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g<sup>–1</sup> after 700 cycles at 2 A g<sup>–1</sup>. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30896–30909 30896–30909"},"PeriodicalIF":15.8,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c0736410.1021/acsnano.4c07364
Jianan Sun, Liu Tan, Bang-Ce Ye* and Xiaobao Bi*,
Although tumor immunotherapy has achieved significant success in recent years, tackling solid tumors remains a formidable challenge. Here, we present an approach that utilizes outer membrane vesicles (OMVs) from bacterial cells as scaffolds to engage immune cells in solid tumor immunotherapy. Two types of nanobodies targeting CD47/SIRPα and PD-1/PD-L1 pathways were simultaneously conjugated onto the surfaces of the OMVs in divalent and trivalent forms using orthogonal SpyCatcher-SpyTag and SnoopCatcher-SnoopTag chemistry. This resulted in the generation of an OMV-based nanosized immune cell engager (OMV-NICE) with dual-targeting abilities. In vitro assays confirmed the retention of the function of the two nanobodies on the OMV-NICE, as evidenced by the synergistically enhanced macrophage phagocytosis and T cell cytotoxicity against tumor cells. In vivo studies using a B16-F10 melanoma mouse model also revealed the superior antitumor activity of OMV-NICE compared to those of unconjugated nanobodies and OMVs alone. Subsequent mechanistic investigations further supported the enhanced recruitment of macrophages and T cells to the tumor region by OMV-NICE. Overall, this work expands the current repertoire of immune cell engagers, and the developed OMV-NICE platform holds great promise for broad applications, particularly in solid tumor immunotherapy.
尽管近年来肿瘤免疫疗法取得了巨大成功,但应对实体瘤仍然是一项艰巨的挑战。在这里,我们提出了一种利用细菌细胞外膜囊泡 (OMV) 作为支架来吸引免疫细胞参与实体瘤免疫治疗的方法。利用正交的SpyCatcher-SpyTag和SnoopCatcher-SnoopTag化学方法,将针对CD47/SIRPα和PD-1/PD-L1通路的两种纳米抗体以二价和三价形式同时连接到OMV表面。这样就产生了具有双重靶向能力的基于 OMV 的纳米级免疫细胞捕获器(OMV-NICE)。体外实验证实,OMV-NICE 上保留了两种纳米抗体的功能,这表现在巨噬细胞吞噬能力和 T 细胞对肿瘤细胞的细胞毒性协同增强。使用 B16-F10 黑色素瘤小鼠模型进行的体内研究也显示,与未结合的纳米抗体和单独的 OMV 相比,OMV-NICE 具有更强的抗肿瘤活性。随后的机理研究进一步证实,OMV-NICE 增强了巨噬细胞和 T 细胞向肿瘤区域的募集。总之,这项工作扩展了目前的免疫细胞吸引剂范围,开发的 OMV-NICE 平台具有广泛的应用前景,尤其是在实体瘤免疫疗法中。
{"title":"Engineered Outer Membrane Vesicles as Nanosized Immune Cell Engagers for Enhanced Solid Tumor Immunotherapy","authors":"Jianan Sun, Liu Tan, Bang-Ce Ye* and Xiaobao Bi*, ","doi":"10.1021/acsnano.4c0736410.1021/acsnano.4c07364","DOIUrl":"https://doi.org/10.1021/acsnano.4c07364https://doi.org/10.1021/acsnano.4c07364","url":null,"abstract":"<p >Although tumor immunotherapy has achieved significant success in recent years, tackling solid tumors remains a formidable challenge. Here, we present an approach that utilizes outer membrane vesicles (OMVs) from bacterial cells as scaffolds to engage immune cells in solid tumor immunotherapy. Two types of nanobodies targeting CD47/SIRPα and PD-1/PD-L1 pathways were simultaneously conjugated onto the surfaces of the OMVs in divalent and trivalent forms using orthogonal SpyCatcher-SpyTag and SnoopCatcher-SnoopTag chemistry. This resulted in the generation of an OMV-based nanosized immune cell engager (OMV-NICE) with dual-targeting abilities. <i>In vitro</i> assays confirmed the retention of the function of the two nanobodies on the OMV-NICE, as evidenced by the synergistically enhanced macrophage phagocytosis and T cell cytotoxicity against tumor cells. <i>In vivo</i> studies using a B16-F10 melanoma mouse model also revealed the superior antitumor activity of OMV-NICE compared to those of unconjugated nanobodies and OMVs alone. Subsequent mechanistic investigations further supported the enhanced recruitment of macrophages and T cells to the tumor region by OMV-NICE. Overall, this work expands the current repertoire of immune cell engagers, and the developed OMV-NICE platform holds great promise for broad applications, particularly in solid tumor immunotherapy.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30332–30344 30332–30344"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c0865010.1021/acsnano.4c08650
Anupom Devnath, Junseong Bae, Batyrbek Alimkhanuly, Gisung Lee, Seunghyun Lee, Arman Kadyrov, Shubham Patil and Dr Seunghyun Lee*,
The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (>109), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (>1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 104 mA/W) and detectivity (1.03 × 1020 Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.
{"title":"Ultralow-Power Circuit and Sensing Applications Based on Subthermionic Threshold Switching Transistors","authors":"Anupom Devnath, Junseong Bae, Batyrbek Alimkhanuly, Gisung Lee, Seunghyun Lee, Arman Kadyrov, Shubham Patil and Dr Seunghyun Lee*, ","doi":"10.1021/acsnano.4c0865010.1021/acsnano.4c08650","DOIUrl":"https://doi.org/10.1021/acsnano.4c08650https://doi.org/10.1021/acsnano.4c08650","url":null,"abstract":"<p >The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (>10<sup>9</sup>), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (>1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 10<sup>4</sup> mA/W) and detectivity (1.03 × 10<sup>20</sup> Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30497–30511 30497–30511"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c0764110.1021/acsnano.4c07641
Meng Wang, Xu Chen*, Fei Zhang, Zhuangzhuang Ma, Xinzhen Ji, Shanshan Cheng, Gencai Pan, Di Wu, Xin-Jian Li, Yu Zhang, Chongxin Shan and Zhifeng Shi*,
Lead-halide perovskite nanocrystals (NCs) have gained significant attention for their promising applications in lighting and display technologies. However, blue-emitting NCs have struggled to match the high efficiency of their red and green counterparts. Moreover, many reported blue-emitting perovskite NCs contain heavy metal lead (Pb), which poses risks to human health and the environment. In this study, we synthesized rare-earth-based Cs3TmCl6 NCs via the hot injection method, which exhibit a broadband blue emission at 440 nm. Combined experimental and theoretical studies indicate that the broadband emission in Cs3TmCl6 arises from self-trapped excitons due to the excited-state structural distortion of the [TmCl6]3– cluster. Furthermore, the ultrafast dynamics of charge carriers were analyzed using time-resolved photoluminescence and transient absorption measurements. Encouraged by the remarkable thermal, light, and water stabilities of Cs3TmCl6 NCs, as evidenced by experimental and theoretical results, a white light-emitting diode was further designed and fabricated using the Cs3TmCl6 NCs as the color converter. The device exhibits outstanding performance, achieving a long half-lifetime of 336 h and a large color-rendering index of 87.0. Combining eco-friendly features and a facile synthesis method, the rare-earth-based Cs3TmCl6 NCs mark a significant breakthrough as a reliable blue emitter, showcasing their future potential in lighting and display applications.
{"title":"Colloidal Synthesis of Blue-Emitting Cs3TmCl6 Nanocrystals via Localized Excitonic Recombination for Down-Conversion White Light-Emitting Diodes","authors":"Meng Wang, Xu Chen*, Fei Zhang, Zhuangzhuang Ma, Xinzhen Ji, Shanshan Cheng, Gencai Pan, Di Wu, Xin-Jian Li, Yu Zhang, Chongxin Shan and Zhifeng Shi*, ","doi":"10.1021/acsnano.4c0764110.1021/acsnano.4c07641","DOIUrl":"https://doi.org/10.1021/acsnano.4c07641https://doi.org/10.1021/acsnano.4c07641","url":null,"abstract":"<p >Lead-halide perovskite nanocrystals (NCs) have gained significant attention for their promising applications in lighting and display technologies. However, blue-emitting NCs have struggled to match the high efficiency of their red and green counterparts. Moreover, many reported blue-emitting perovskite NCs contain heavy metal lead (Pb), which poses risks to human health and the environment. In this study, we synthesized rare-earth-based Cs<sub>3</sub>TmCl<sub>6</sub> NCs via the hot injection method, which exhibit a broadband blue emission at 440 nm. Combined experimental and theoretical studies indicate that the broadband emission in Cs<sub>3</sub>TmCl<sub>6</sub> arises from self-trapped excitons due to the excited-state structural distortion of the [TmCl<sub>6</sub>]<sup>3–</sup> cluster. Furthermore, the ultrafast dynamics of charge carriers were analyzed using time-resolved photoluminescence and transient absorption measurements. Encouraged by the remarkable thermal, light, and water stabilities of Cs<sub>3</sub>TmCl<sub>6</sub> NCs, as evidenced by experimental and theoretical results, a white light-emitting diode was further designed and fabricated using the Cs<sub>3</sub>TmCl<sub>6</sub> NCs as the color converter. The device exhibits outstanding performance, achieving a long half-lifetime of 336 h and a large color-rendering index of 87.0. Combining eco-friendly features and a facile synthesis method, the rare-earth-based Cs<sub>3</sub>TmCl<sub>6</sub> NCs mark a significant breakthrough as a reliable blue emitter, showcasing their future potential in lighting and display applications.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30421–30432 30421–30432"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c0859910.1021/acsnano.4c08599
Fernando Igoa Saldaña, Thomas Gaudisson, Sylvie Le Floch, Benoît Baptiste, Ludovic Delbes, Virgile Malarewicz, Olivier Beyssac, Keevin Béneut, Cristina Coelho Diogo, Christel Gervais, Gwenaëlle Rousse, Karsten Rasim, Yuri Grin, Alexandre Maître, Yann Le Godec* and David Portehault*,
Boron carbide (B4+δC) possesses a large potential as a structural material owing to its lightness, refractory character, and outstanding mechanical properties. However, its large-scale industrialization is set back by its tendency to amorphize when subjected to an external stress. In the present work, we design a path toward nanostructured boron carbide with greatly enhanced hardness and resistance to amorphization. The reaction pathway consists of triggering an isomorphic transformation of covalent nanocrystals of Na1–xB5–xC1+x (x = 0.18) produced in molten salts. The resulting 10 nm B4.1C nanocrystals exhibit a 4-fold decrease of size compared to previous works. Solid-state 11B and 13C NMR coupled to density functional theory (DFT) reveal that the boron carbide nanocrystals are made of a complex mixture of atomic configurations, which are located at the covalent structural chains between B11C icosahedral building units. These nanocrystals are combined with a spark plasma-sintering-derived method operated at high pressure. This yields full densification while maintaining the particle size. The nanoscaled grains and high density of grain boundaries provide the resulting nanostructured bodies with significantly enhanced hardness and resistance to amorphization, thus delivering a superhard material.
{"title":"Transforming Nanocrystals into Superhard Boron Carbide Nanostructures","authors":"Fernando Igoa Saldaña, Thomas Gaudisson, Sylvie Le Floch, Benoît Baptiste, Ludovic Delbes, Virgile Malarewicz, Olivier Beyssac, Keevin Béneut, Cristina Coelho Diogo, Christel Gervais, Gwenaëlle Rousse, Karsten Rasim, Yuri Grin, Alexandre Maître, Yann Le Godec* and David Portehault*, ","doi":"10.1021/acsnano.4c0859910.1021/acsnano.4c08599","DOIUrl":"https://doi.org/10.1021/acsnano.4c08599https://doi.org/10.1021/acsnano.4c08599","url":null,"abstract":"<p >Boron carbide (B<sub>4+δ</sub>C) possesses a large potential as a structural material owing to its lightness, refractory character, and outstanding mechanical properties. However, its large-scale industrialization is set back by its tendency to amorphize when subjected to an external stress. In the present work, we design a path toward nanostructured boron carbide with greatly enhanced hardness and resistance to amorphization. The reaction pathway consists of triggering an isomorphic transformation of covalent nanocrystals of Na<sub>1–<i>x</i></sub>B<sub>5–<i>x</i></sub>C<sub>1+<i>x</i></sub> (<i>x</i> = 0.18) produced in molten salts. The resulting 10 nm B<sub>4.1</sub>C nanocrystals exhibit a 4-fold decrease of size compared to previous works. Solid-state <sup>11</sup>B and <sup>13</sup>C NMR coupled to density functional theory (DFT) reveal that the boron carbide nanocrystals are made of a complex mixture of atomic configurations, which are located at the covalent structural chains between B<sub>11</sub>C icosahedral building units. These nanocrystals are combined with a spark plasma-sintering-derived method operated at high pressure. This yields full densification while maintaining the particle size. The nanoscaled grains and high density of grain boundaries provide the resulting nanostructured bodies with significantly enhanced hardness and resistance to amorphization, thus delivering a superhard material.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30473–30483 30473–30483"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c1099810.1021/acsnano.4c10998
Lisa M. Rütten, Harald Schmid, Eva Liebhaber, Giada Franceschi, Ali Yazdani, Gaël Reecht, Kai Rossnagel, Felix von Oppen and Katharina J. Franke*,
Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2H-NbSe2. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.
{"title":"Wave Function Engineering on Superconducting Substrates: Chiral Yu-Shiba-Rusinov Molecules","authors":"Lisa M. Rütten, Harald Schmid, Eva Liebhaber, Giada Franceschi, Ali Yazdani, Gaël Reecht, Kai Rossnagel, Felix von Oppen and Katharina J. Franke*, ","doi":"10.1021/acsnano.4c1099810.1021/acsnano.4c10998","DOIUrl":"https://doi.org/10.1021/acsnano.4c10998https://doi.org/10.1021/acsnano.4c10998","url":null,"abstract":"<p >Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2<i>H</i>-NbSe<sub>2</sub>. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30798–30804 30798–30804"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c10998","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acsnano.4c0761010.1021/acsnano.4c07610
Anu Sharma, Rajneesh Srivastava, Surya C. Gnyawali, Pramod Bhasme, Adam J. Anthony, Yi Xuan, Jonathan C. Trinidad, Chandan K. Sen, David E. Clemmer, Sashwati Roy and Subhadip Ghatak*,
Tissue nanotransfection (TNT)-based fluorescent labeling of cell-specific exosomes has shown that exosomes play a central role in physiological keratinocyte–macrophage (mϕ) crosstalk at the wound-site. Here, we report that during the early phase of wound reepithelialization, macrophage-derived exosomes (Exomϕ), enriched with the outer mitochondrial membrane protein TOMM70, are localized in leading-edge keratinocytes. TOMM70 is a 70 kDa adaptor protein anchored in the mitochondrial outer membrane and plays a critical role in maintaining mitochondrial function and quality. TOMM70 selectively recognizes cytosolic chaperones by its tetratricopeptide repeat (TPR) domain and facilitates the import of preproteins lacking a positively charged mitochondrial targeted sequence. Exosomal packaging of TOMM70 in mϕ was independent of mitochondrial fission. TOMM70-enriched Exomϕ compensated for the hypoxia-induced depletion of epidermal TOMM70, thereby rescuing mitochondrial metabolism in leading-edge keratinocytes. Thus, macrophage-derived TOMM70 is responsible for the glycolytic ATP supply to power keratinocyte migration. Blockade of exosomal uptake from keratinocytes impaired wound closure with the persistence of proinflammatory mϕ in the wound microenvironment, pointing toward a bidirectional crosstalk between these two cell types. The significance of such bidirectional crosstalk was established by the observation that in patients with nonhealing diabetic foot ulcers, TOMM70 is deficient in keratinocytes of wound-edge tissues.
{"title":"Mitochondrial Bioenergetics of Functional Wound Closure is Dependent on Macrophage–Keratinocyte Exosomal Crosstalk","authors":"Anu Sharma, Rajneesh Srivastava, Surya C. Gnyawali, Pramod Bhasme, Adam J. Anthony, Yi Xuan, Jonathan C. Trinidad, Chandan K. Sen, David E. Clemmer, Sashwati Roy and Subhadip Ghatak*, ","doi":"10.1021/acsnano.4c0761010.1021/acsnano.4c07610","DOIUrl":"https://doi.org/10.1021/acsnano.4c07610https://doi.org/10.1021/acsnano.4c07610","url":null,"abstract":"<p >Tissue nanotransfection (TNT)-based fluorescent labeling of cell-specific exosomes has shown that exosomes play a central role in physiological keratinocyte–macrophage (mϕ) crosstalk at the wound-site. Here, we report that during the early phase of wound reepithelialization, macrophage-derived exosomes (Exo<sub>mϕ</sub>), enriched with the outer mitochondrial membrane protein TOMM70, are localized in leading-edge keratinocytes. TOMM70 is a 70 kDa adaptor protein anchored in the mitochondrial outer membrane and plays a critical role in maintaining mitochondrial function and quality. TOMM70 selectively recognizes cytosolic chaperones by its tetratricopeptide repeat (TPR) domain and facilitates the import of preproteins lacking a positively charged mitochondrial targeted sequence. Exosomal packaging of TOMM70 in mϕ was independent of mitochondrial fission. TOMM70-enriched Exo<sub>mϕ</sub> compensated for the hypoxia-induced depletion of epidermal TOMM70, thereby rescuing mitochondrial metabolism in leading-edge keratinocytes. Thus, macrophage-derived TOMM70 is responsible for the glycolytic ATP supply to power keratinocyte migration. Blockade of exosomal uptake from keratinocytes impaired wound closure with the persistence of proinflammatory mϕ in the wound microenvironment, pointing toward a bidirectional crosstalk between these two cell types. The significance of such bidirectional crosstalk was established by the observation that in patients with nonhealing diabetic foot ulcers, TOMM70 is deficient in keratinocytes of wound-edge tissues.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30405–30420 30405–30420"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c07610","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
{"title":"Self-Assembly at Curved Biointerfaces","authors":"Lijuan Gao, Xiaobin Dai, Yibo Wu, Yuming Wang, Linghe Cheng and Li-Tang Yan*, ","doi":"10.1021/acsnano.4c0967510.1021/acsnano.4c09675","DOIUrl":"https://doi.org/10.1021/acsnano.4c09675https://doi.org/10.1021/acsnano.4c09675","url":null,"abstract":"<p >Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30184–30210 30184–30210"},"PeriodicalIF":15.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1021/acsnano.4c0516910.1021/acsnano.4c05169
Kewa Gao, Hesong Han, Matileen G. Cranick, Sheng Zhao, Shanxiu Xu, Boyan Yin, Hengyue Song, Yibo Hu, Maria T. Clarke, David Wang, Jessica M. Wong, Zehua Zhao, Benjamin W. Burgstone, Diana L. Farmer, Niren Murthy* and Aijun Wang*,
In utero gene editing with mRNA-based therapeutics has the potential to revolutionize the treatment of neurodevelopmental disorders. However, a critical bottleneck in clinical application has been the lack of mRNA delivery vehicles that can efficiently transfect cells in the brain. In this report, we demonstrate that in utero intracerebroventricular (ICV) injection of densely PEGylated lipid nanoparticles (ADP-LNPs) containing an acid-degradable PEG–lipid can safely and effectively deliver mRNA for gene editing enzymes to the fetal mouse brain, resulting in successful transfection and editing of brain cells. ADP-LNPs containing Cre mRNA transfected 30% of the fetal brain cells in Ai9 mice and had no detectable adverse effects on fetal development and postnatal growth. In addition, ADP-LNPs efficiently transfected neural stem and progenitor cells in Ai9 mice with Cre mRNA, which subsequently proliferated and caused over 40% of the cortical neurons and 60% of the hippocampal neurons to be edited in treated mice 10 weeks after birth. Furthermore, using Angelman syndrome, a paradigmatic neurodevelopmental disorder, as a disease model, we demonstrate that ADP-LNPs carrying Cas9 mRNA and gRNA induced indels in 21% of brain cells within 7 days postpartum, underscoring the precision and potential of this approach. These findings demonstrate that LNP/mRNA complexes have the potential to be a transformative tool for in utero treatment of neurodevelopmental disorders and set the stage for a frontier in treating neurodevelopmental disorders that focuses on curing genetic diseases before birth.
{"title":"Widespread Gene Editing in the Brain via In Utero Delivery of mRNA Using Acid-Degradable Lipid Nanoparticles","authors":"Kewa Gao, Hesong Han, Matileen G. Cranick, Sheng Zhao, Shanxiu Xu, Boyan Yin, Hengyue Song, Yibo Hu, Maria T. Clarke, David Wang, Jessica M. Wong, Zehua Zhao, Benjamin W. Burgstone, Diana L. Farmer, Niren Murthy* and Aijun Wang*, ","doi":"10.1021/acsnano.4c0516910.1021/acsnano.4c05169","DOIUrl":"https://doi.org/10.1021/acsnano.4c05169https://doi.org/10.1021/acsnano.4c05169","url":null,"abstract":"<p >In utero gene editing with mRNA-based therapeutics has the potential to revolutionize the treatment of neurodevelopmental disorders. However, a critical bottleneck in clinical application has been the lack of mRNA delivery vehicles that can efficiently transfect cells in the brain. In this report, we demonstrate that in utero intracerebroventricular (ICV) injection of densely PEGylated lipid nanoparticles (ADP-LNPs) containing an acid-degradable PEG–lipid can safely and effectively deliver mRNA for gene editing enzymes to the fetal mouse brain, resulting in successful transfection and editing of brain cells. ADP-LNPs containing Cre mRNA transfected 30% of the fetal brain cells in Ai9 mice and had no detectable adverse effects on fetal development and postnatal growth. In addition, ADP-LNPs efficiently transfected neural stem and progenitor cells in Ai9 mice with Cre mRNA, which subsequently proliferated and caused over 40% of the cortical neurons and 60% of the hippocampal neurons to be edited in treated mice 10 weeks after birth. Furthermore, using Angelman syndrome, a paradigmatic neurodevelopmental disorder, as a disease model, we demonstrate that ADP-LNPs carrying Cas9 mRNA and gRNA induced indels in 21% of brain cells within 7 days postpartum, underscoring the precision and potential of this approach. These findings demonstrate that LNP/mRNA complexes have the potential to be a transformative tool for in utero treatment of neurodevelopmental disorders and set the stage for a frontier in treating neurodevelopmental disorders that focuses on curing genetic diseases before birth.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30293–30306 30293–30306"},"PeriodicalIF":15.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c05169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The low ionic conductivity of poly(ethylene oxide) (PEO)-based polymer electrolytes at room temperature impedes their practical applications. The addition of a plasticizer into polymer electrolytes could significantly promote ion transport while inevitably decreasing their mechanical strength. Herein, we report a supramolecular plasticizer (SMP) to break the trade-off effect between ionic conductivity and mechanical properties in PEO-based polymer electrolytes. Accordingly, the SMP is constructed by tetraethylene glycol dimethyl ether (G4) and SbF3 through halogen bonds. The SMP-plasticized PEO electrolyte (PEO/SMP) presents a simultaneously enhanced ionic conductivity of 2.4 × 10–4 S cm–1 (25 °C) and a high mechanical strength of 8.1 MPa, compared to those of pristine PEO-based electrolytes. Benefiting from the halogen bonds between G4 and SbF3, the Li–O coordination in PEO/SMP is evidently weakened, and thus rapid Li+ transport is achieved. Furthermore, the PEO/SMP electrolyte possesses a wide electrochemical stability window of 4.5 V and, importantly, derives an inorganic-rich SEI with a low interfacial resistance on a lithium metal surface. By using PEO/SMP, the lithium-metal battery with the LiNi0.5Co0.2Mn0.3O2 cathode exhibits a good rate and long-term cycling performance with a capacity retention of 75.3% (500 cycles). This work offers a rational guideline for the design of polymer electrolytes suitable for high-performance lithium-metal batteries.
{"title":"Halogen-Bonding Nanoarchitectonics in Supramolecular Plasticizers for Breaking the Trade-Off between Ion Transport and Mechanical Strength of Polymer Electrolytes for High-Voltage Li-Metal Batteries","authors":"Jieqing Shen, Wensheng Tian, Shuohan Liu, Hui Pan*, Cheng Yang, Hengdao Quan* and Shenmin Zhu*, ","doi":"10.1021/acsnano.4c0987810.1021/acsnano.4c09878","DOIUrl":"https://doi.org/10.1021/acsnano.4c09878https://doi.org/10.1021/acsnano.4c09878","url":null,"abstract":"<p >The low ionic conductivity of poly(ethylene oxide) (PEO)-based polymer electrolytes at room temperature impedes their practical applications. The addition of a plasticizer into polymer electrolytes could significantly promote ion transport while inevitably decreasing their mechanical strength. Herein, we report a supramolecular plasticizer (SMP) to break the trade-off effect between ionic conductivity and mechanical properties in PEO-based polymer electrolytes. Accordingly, the SMP is constructed by tetraethylene glycol dimethyl ether (G4) and SbF<sub>3</sub> through halogen bonds. The SMP-plasticized PEO electrolyte (PEO/SMP) presents a simultaneously enhanced ionic conductivity of 2.4 × 10<sup>–4</sup> S cm<sup>–1</sup> (25 °C) and a high mechanical strength of 8.1 MPa, compared to those of pristine PEO-based electrolytes. Benefiting from the halogen bonds between G4 and SbF<sub>3</sub>, the Li–O coordination in PEO/SMP is evidently weakened, and thus rapid Li<sup>+</sup> transport is achieved. Furthermore, the PEO/SMP electrolyte possesses a wide electrochemical stability window of 4.5 V and, importantly, derives an inorganic-rich SEI with a low interfacial resistance on a lithium metal surface. By using PEO/SMP, the lithium-metal battery with the LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathode exhibits a good rate and long-term cycling performance with a capacity retention of 75.3% (500 cycles). This work offers a rational guideline for the design of polymer electrolytes suitable for high-performance lithium-metal batteries.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30716–30727 30716–30727"},"PeriodicalIF":15.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}