Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0725610.1021/acsnano.4c07256
Qiming R. Zhang, Styra Xicun Wang and Ritchie Chen*,
The peripheral nervous system, consisting of somatic sensory circuits and autonomic effector circuits, enables communication between the body’s organs and the brain. Dysregulation in these circuits is implicated in an array of disorders and represents a potential target for neuromodulation therapies. In this Perspective, we discuss recent advances in the neurobiological understanding of these brain–body pathways and the expansion of neurotechnologies beyond the brain to the viscera. We focus primarily on the development of integrated technologies that leverage bioelectronic devices with optogenetic tools. We highlight the discovery and application of ultrapotent and red-shifted channelrhodopsins for minimally invasive optogenetics and as tools to study brain–body circuits. These innovations enable studies of freely behaving animals and have enhanced our understanding of the role physiological signals play in brain states and behavior.
{"title":"Integrated Bioelectronic and Optogenetic Methods to Study Brain–Body Circuits","authors":"Qiming R. Zhang, Styra Xicun Wang and Ritchie Chen*, ","doi":"10.1021/acsnano.4c0725610.1021/acsnano.4c07256","DOIUrl":"https://doi.org/10.1021/acsnano.4c07256https://doi.org/10.1021/acsnano.4c07256","url":null,"abstract":"<p >The peripheral nervous system, consisting of somatic sensory circuits and autonomic effector circuits, enables communication between the body’s organs and the brain. Dysregulation in these circuits is implicated in an array of disorders and represents a potential target for neuromodulation therapies. In this Perspective, we discuss recent advances in the neurobiological understanding of these brain–body pathways and the expansion of neurotechnologies beyond the brain to the viscera. We focus primarily on the development of integrated technologies that leverage bioelectronic devices with optogenetic tools. We highlight the discovery and application of ultrapotent and red-shifted channelrhodopsins for minimally invasive optogenetics and as tools to study brain–body circuits. These innovations enable studies of freely behaving animals and have enhanced our understanding of the role physiological signals play in brain states and behavior.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30117–30122 30117–30122"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c07256","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0958110.1021/acsnano.4c09581
Fangzhou Li, Jian Zhao*, Bin Li, Zechao Han, Linglan Guo, Peicheng Han, Hyun Ho Kim, Yanjie Su, Li-Min Zhu and Daozhi Shen*,
Energy harvesting from ubiquitous natural water vapor based on moisture electric generator (MEG) technology holds great potential to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges of low output, and a single MEG complemented with another form of energy harvesting for achieving high power has seldom been demonstrated. Herein, we report a flexible and efficient hybrid generator capable of harvesting moisture and tribo energies simultaneously, both from the source of water droplets. The moisture electric and triboelectric layers are based on a water-absorbent citric acid (CA)-mediated polyglutamic acid (PGA) hydrogel and porous electret expanded polytetrafluoroethylene (E-PTFE), respectively. Such a waterproof E-PTFE film not only enables efficient triboelectrification with water droplets' contact but also facilitates water vapor to be transferred into the hydrogel layer for moisture electricity generation. A single hybrid generator under water droplets' impact delivers a DC voltage of 0.55 V and a peak current density of 120 μA cm–2 from the MEG, together with a simultaneous AC output voltage of 300 V and a current of 400 μA from the complementary water-based triboelectric generator (TEG) side. Such a hybrid generator can work even under harsh wild environments with 5 °C cold and saltwater impacts. Significantly, an optical alarm and wireless communication system for wild, complex, and emergency scenarios is demonstrated with power from the hybrid generators. This work expands the applications of water-based electricity generation technologies and provides insight into harvesting multiple potential energies in the natural environment with high output.
基于湿气发生器(MEG)技术从无处不在的天然水蒸气中收集能量,在为便携式电子设备、物联网和无线传输供电方面具有巨大潜力。然而,大多数设备仍然面临输出功率低的挑战,而且很少有人将单一的 MEG 与另一种形式的能量收集技术相辅相成,以实现高功率。在此,我们报告了一种灵活、高效的混合发电机,它能够同时从水滴源头收集湿能和三电能。湿电层和三电层分别基于吸水性柠檬酸(CA)介导的聚谷氨酸(PGA)水凝胶和多孔驻极体膨体聚四氟乙烯(E-PTFE)。这种防水的 E-PTFE 薄膜不仅能与水滴接触实现高效的三电化,还能促进水蒸气进入水凝胶层进行湿发电。在水滴的冲击下,单个混合发电机从 MEG 输出 0.55 V 的直流电压和 120 μA cm-2 的峰值电流密度,同时从互补的水基三电发电器(TEG)侧输出 300 V 的交流电压和 400 μA 的电流。这种混合发电机即使在 5 °C 低温和盐水冲击的恶劣野外环境下也能正常工作。值得注意的是,利用混合发电机提供的电力,演示了一个适用于野外、复杂和紧急场景的光学报警和无线通信系统。这项工作拓展了水基发电技术的应用领域,并为在自然环境中获取多种潜在能量并实现高产出提供了启示。
{"title":"Water-Triboelectrification-Complemented Moisture Electric Generator","authors":"Fangzhou Li, Jian Zhao*, Bin Li, Zechao Han, Linglan Guo, Peicheng Han, Hyun Ho Kim, Yanjie Su, Li-Min Zhu and Daozhi Shen*, ","doi":"10.1021/acsnano.4c0958110.1021/acsnano.4c09581","DOIUrl":"https://doi.org/10.1021/acsnano.4c09581https://doi.org/10.1021/acsnano.4c09581","url":null,"abstract":"<p >Energy harvesting from ubiquitous natural water vapor based on moisture electric generator (MEG) technology holds great potential to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges of low output, and a single MEG complemented with another form of energy harvesting for achieving high power has seldom been demonstrated. Herein, we report a flexible and efficient hybrid generator capable of harvesting moisture and tribo energies simultaneously, both from the source of water droplets. The moisture electric and triboelectric layers are based on a water-absorbent citric acid (CA)-mediated polyglutamic acid (PGA) hydrogel and porous electret expanded polytetrafluoroethylene (E-PTFE), respectively. Such a waterproof E-PTFE film not only enables efficient triboelectrification with water droplets' contact but also facilitates water vapor to be transferred into the hydrogel layer for moisture electricity generation. A single hybrid generator under water droplets' impact delivers a DC voltage of 0.55 V and a peak current density of 120 μA cm<sup>–2</sup> from the MEG, together with a simultaneous AC output voltage of 300 V and a current of 400 μA from the complementary water-based triboelectric generator (TEG) side. Such a hybrid generator can work even under harsh wild environments with 5 °C cold and saltwater impacts. Significantly, an optical alarm and wireless communication system for wild, complex, and emergency scenarios is demonstrated with power from the hybrid generators. This work expands the applications of water-based electricity generation technologies and provides insight into harvesting multiple potential energies in the natural environment with high output.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30658–30667 30658–30667"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0983010.1021/acsnano.4c09830
Jiayuan Alex Zhang, Kailin Feng, Wei-Ting Shen, Weiwei Gao* and Liangfang Zhang*,
Cellular nanoparticles (CNPs), fabricated by coating natural cell membranes onto nanoparticle cores, have been widely used to replicate cellular functions for various therapeutic applications. Specifically, CNPs act as cell decoys, binding harmful molecules or infectious pathogens and neutralizing their bioactivity. This neutralization strategy leverages the target’s functional properties rather than its structure, resulting in broad-spectrum efficacy. Since their inception, CNP platforms have undergone significant advancements to enhance their neutralizing capabilities and efficiency. This review traces the research advances of CNP technology as multiplex countermeasures across four categories with progressive functions: neutralization through cell membrane binding, simultaneous neutralization using both cell membrane and nanoparticle core, continuous neutralization via enzymatic degradation, and enhanced neutralization through membrane modification. The review highlights the structure–property relationship in CNP designs, showing the functional advances of each category of CNP. By providing an overview of CNPs in multiplex neutralization of a wide range of chemical and biological threat agents, this article aims to inspire the development of more advanced CNP nanoformulations and uncover innovative applications to address unresolved medical challenges.
{"title":"Research Advances of Cellular Nanoparticles as Multiplex Countermeasures","authors":"Jiayuan Alex Zhang, Kailin Feng, Wei-Ting Shen, Weiwei Gao* and Liangfang Zhang*, ","doi":"10.1021/acsnano.4c0983010.1021/acsnano.4c09830","DOIUrl":"https://doi.org/10.1021/acsnano.4c09830https://doi.org/10.1021/acsnano.4c09830","url":null,"abstract":"<p >Cellular nanoparticles (CNPs), fabricated by coating natural cell membranes onto nanoparticle cores, have been widely used to replicate cellular functions for various therapeutic applications. Specifically, CNPs act as cell decoys, binding harmful molecules or infectious pathogens and neutralizing their bioactivity. This neutralization strategy leverages the target’s functional properties rather than its structure, resulting in broad-spectrum efficacy. Since their inception, CNP platforms have undergone significant advancements to enhance their neutralizing capabilities and efficiency. This review traces the research advances of CNP technology as multiplex countermeasures across four categories with progressive functions: neutralization through cell membrane binding, simultaneous neutralization using both cell membrane and nanoparticle core, continuous neutralization via enzymatic degradation, and enhanced neutralization through membrane modification. The review highlights the structure–property relationship in CNP designs, showing the functional advances of each category of CNP. By providing an overview of CNPs in multiplex neutralization of a wide range of chemical and biological threat agents, this article aims to inspire the development of more advanced CNP nanoformulations and uncover innovative applications to address unresolved medical challenges.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30211–30223 30211–30223"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c09830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c1178710.1021/acsnano.4c11787
Hongchao Yang, Zhiwei Ma and Qiangbin Wang*,
Silver chalcogenide (Ag2X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900–2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag2X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag2X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag2X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag2X QDs.
{"title":"Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices","authors":"Hongchao Yang, Zhiwei Ma and Qiangbin Wang*, ","doi":"10.1021/acsnano.4c1178710.1021/acsnano.4c11787","DOIUrl":"https://doi.org/10.1021/acsnano.4c11787https://doi.org/10.1021/acsnano.4c11787","url":null,"abstract":"<p >Silver chalcogenide (Ag<sub>2</sub>X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900–2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag<sub>2</sub>X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag<sub>2</sub>X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag<sub>2</sub>X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag<sub>2</sub>X QDs.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30123–30131 30123–30131"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c1019410.1021/acsnano.4c10194
Yanfei Guo, Peiran Li, Xiaocui Guo*, Chi Yao* and Dayong Yang*,
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
{"title":"Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics","authors":"Yanfei Guo, Peiran Li, Xiaocui Guo*, Chi Yao* and Dayong Yang*, ","doi":"10.1021/acsnano.4c1019410.1021/acsnano.4c10194","DOIUrl":"https://doi.org/10.1021/acsnano.4c10194https://doi.org/10.1021/acsnano.4c10194","url":null,"abstract":"<p >Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30224–30246 30224–30246"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0977910.1021/acsnano.4c09779
Junsok Choi, Ki Tae Nam, Eun-Ho Sohn and Yongsok Seo*,
The magnetoelectric (ME) effect, which involves the interaction of magnetic and electric fields within a material, has a significant potential for various applications. Our study addresses the limitations of conventional magnetostriction-based ME materials by demonstrating an alternative approach that achieves substantial ME effects in core–shell-type nanocomposites at room temperature. By synthesizing ferrimagnetic Fe3O4 nanoparticles onto piezoelectric poly(vinylidene fluoride) (PVDF) particles, we identified a distinct ME mechanism. In magnetorheological (MR) fluids, the magnetic-field-induced aggregation of Fe3O4 nanoparticles, combined with the piezoelectricity of PVDF, leads to a pronounced ME effect, significantly enhancing the performance and stability of MR fluids. This research highlights a crucial observation of distinct ME effects, which could suggest potential pathways for advancements in practical applications including microfluidics, vibration dampers, tactile technologies, and biomedical and bioengineering fields.
磁电(ME)效应涉及材料内部磁场和电场的相互作用,在各种应用中具有巨大的潜力。我们的研究解决了基于磁致伸缩的传统 ME 材料的局限性,展示了一种可在室温下在芯壳型纳米复合材料中实现实质性 ME 效应的替代方法。通过在压电聚偏二氟乙烯(PVDF)颗粒上合成铁磁性 Fe3O4 纳米颗粒,我们发现了一种独特的 ME 机制。在磁流变(MR)流体中,磁场诱导的 Fe3O4 纳米粒子聚集与 PVDF 的压电性相结合,产生了明显的 ME 效应,显著提高了磁流变流体的性能和稳定性。这项研究凸显了对独特 ME 效应的重要观察,为微流控、减震器、触觉技术以及生物医学和生物工程等领域的实际应用提供了潜在的发展途径。
{"title":"Macroscopic Room-Temperature Magnetoelectricity in Piezoelectric (Core)–Ferrimagnetic (Shell) Nanocomposites","authors":"Junsok Choi, Ki Tae Nam, Eun-Ho Sohn and Yongsok Seo*, ","doi":"10.1021/acsnano.4c0977910.1021/acsnano.4c09779","DOIUrl":"https://doi.org/10.1021/acsnano.4c09779https://doi.org/10.1021/acsnano.4c09779","url":null,"abstract":"<p >The magnetoelectric (ME) effect, which involves the interaction of magnetic and electric fields within a material, has a significant potential for various applications. Our study addresses the limitations of conventional magnetostriction-based ME materials by demonstrating an alternative approach that achieves substantial ME effects in core–shell-type nanocomposites at room temperature. By synthesizing ferrimagnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles onto piezoelectric poly(vinylidene fluoride) (PVDF) particles, we identified a distinct ME mechanism. In magnetorheological (MR) fluids, the magnetic-field-induced aggregation of Fe<sub>3</sub>O<sub>4</sub> nanoparticles, combined with the piezoelectricity of PVDF, leads to a pronounced ME effect, significantly enhancing the performance and stability of MR fluids. This research highlights a crucial observation of distinct ME effects, which could suggest potential pathways for advancements in practical applications including microfluidics, vibration dampers, tactile technologies, and biomedical and bioengineering fields.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30681–30689 30681–30689"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c1070210.1021/acsnano.4c10702
Min Lv, Xiangxiang Zhang, Bei Li, Baibiao Huang and Zhaoke Zheng*,
Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.
{"title":"Single-Particle Fluorescence Spectroscopy for Elucidating Charge Transfer and Catalytic Mechanisms on Nanophotocatalysts","authors":"Min Lv, Xiangxiang Zhang, Bei Li, Baibiao Huang and Zhaoke Zheng*, ","doi":"10.1021/acsnano.4c1070210.1021/acsnano.4c10702","DOIUrl":"https://doi.org/10.1021/acsnano.4c10702https://doi.org/10.1021/acsnano.4c10702","url":null,"abstract":"<p >Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30247–30268 30247–30268"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0900210.1021/acsnano.4c09002
Qingqing Gu, Haojian Lin, Chaowei Si, Zhen Wang, Aiqin Wang, Fei Liu*, Bo Li* and Bing Yang*,
Two-dimensional (2D) borophene materials are predicted to be ideal catalytic materials due to their structural analogy to graphene. However, the lack of chemical functionalization of borophene hinders its practical application in catalysis. Herein, we reported a massive production of freestanding few-layer 2D borophene oxide (BO) sheets with tunable active oxygen species by a moderate oxidation-assisted exfoliation method. State-of-the-art characterizations demonstrated the evolution of active oxygen species from surface B–O species at the initial stage to the intermediate BxOy (1.5 < x/y < 3) species and eventually to bulk B2O3 with an increasing oxidation duration. As a result, the 2D BO sheet with enhanced B–O species exhibited a strikingly high catalytic activity for the aerobic oxidation of benzylamine into N-benzylidenebenzylamine. The formation rate of imine reaches as high as 29.7 mmol gcatal–1 h–1 under mild reaction conditions, higher than that of pristine borophene, boron oxides, graphene oxide, and other metal/metal-free catalysts in the reported literature. Density functional theory calculations further revealed the critical role of surface B–O species, which favor the adsorption and N–H activation of benzylamine for high activity and suppress the deep dehydrogenation, yielding an outstanding imine selectivity (>90%). This work paves the route for a moderate and scalable synthesis of few-layer BO sheets with highly active B–O species toward advanced metal-free catalysis beyond graphene.
{"title":"Tuning the Active Oxygen Species of Two-Dimensional Borophene Oxide toward Advanced Metal-Free Catalysis","authors":"Qingqing Gu, Haojian Lin, Chaowei Si, Zhen Wang, Aiqin Wang, Fei Liu*, Bo Li* and Bing Yang*, ","doi":"10.1021/acsnano.4c0900210.1021/acsnano.4c09002","DOIUrl":"https://doi.org/10.1021/acsnano.4c09002https://doi.org/10.1021/acsnano.4c09002","url":null,"abstract":"<p >Two-dimensional (2D) borophene materials are predicted to be ideal catalytic materials due to their structural analogy to graphene. However, the lack of chemical functionalization of borophene hinders its practical application in catalysis. Herein, we reported a massive production of freestanding few-layer 2D borophene oxide (BO) sheets with tunable active oxygen species by a moderate oxidation-assisted exfoliation method. State-of-the-art characterizations demonstrated the evolution of active oxygen species from surface B–O species at the initial stage to the intermediate B<sub><i>x</i></sub>O<sub><i>y</i></sub> (1.5 < <i>x</i>/<i>y</i> < 3) species and eventually to bulk B<sub>2</sub>O<sub>3</sub> with an increasing oxidation duration. As a result, the 2D BO sheet with enhanced B–O species exhibited a strikingly high catalytic activity for the aerobic oxidation of benzylamine into <i>N</i>-benzylidenebenzylamine. The formation rate of imine reaches as high as 29.7 mmol g<sub>catal</sub><sup>–1</sup> h<sup>–1</sup> under mild reaction conditions, higher than that of pristine borophene, boron oxides, graphene oxide, and other metal/metal-free catalysts in the reported literature. Density functional theory calculations further revealed the critical role of surface B–O species, which favor the adsorption and N–H activation of benzylamine for high activity and suppress the deep dehydrogenation, yielding an outstanding imine selectivity (>90%). This work paves the route for a moderate and scalable synthesis of few-layer BO sheets with highly active B–O species toward advanced metal-free catalysis beyond graphene.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30574–30583 30574–30583"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c1048110.1021/acsnano.4c10481
Chenglu Peng, Wei Lu*, Ran An, Xiaoyang Li, Cuixia Sun and Yapeng Fang*,
Resistant starch (RS) is present in various natural and processed foods as well as medications. It has garnered significant attention from both scientists and consumers due to its notable health benefits. However, there is a limited understanding of how RS particles are absorbed at the cellular level and their metabolic behavior, resulting in a lack of clarity regarding the intestinal safety implications of prolonged RS exposure. Here, we demonstrate that rice-derived RS nanoparticles (RSNs) can lead to colitis in mice by triggering lysosomal exocytosis. The research shows that RSNs enter the cells through macropinocytosis and clathrin- and caveolin-mediated endocytosis and activate TRPML1 thereafter, causing the release of lysosomal calcium ions. This, in turn, triggered the TFEB signaling pathway and thus upregulated the lysosomal exocytosis level, leading to lysosomal enzymes to be released to the intestinal lumen. As a result, a decreased number of intestinal goblet cells, diminished tight junction protein expression, and imbalanced intestinal flora in mice were observed. These damages to the intestinal barrier ultimately led to the occurrence of colitis. Our study offers important insights into the cellular bioeffects and detrimental effects on intestinal health caused by RS particles and emphasizes the need to re-evaluate the safety of long-term RS consumption.
{"title":"Resistant Starch Nanoparticles Induce Colitis through Lysosomal Exocytosis in Mice","authors":"Chenglu Peng, Wei Lu*, Ran An, Xiaoyang Li, Cuixia Sun and Yapeng Fang*, ","doi":"10.1021/acsnano.4c1048110.1021/acsnano.4c10481","DOIUrl":"https://doi.org/10.1021/acsnano.4c10481https://doi.org/10.1021/acsnano.4c10481","url":null,"abstract":"<p >Resistant starch (RS) is present in various natural and processed foods as well as medications. It has garnered significant attention from both scientists and consumers due to its notable health benefits. However, there is a limited understanding of how RS particles are absorbed at the cellular level and their metabolic behavior, resulting in a lack of clarity regarding the intestinal safety implications of prolonged RS exposure. Here, we demonstrate that rice-derived RS nanoparticles (RSNs) can lead to colitis in mice by triggering lysosomal exocytosis. The research shows that RSNs enter the cells through macropinocytosis and clathrin- and caveolin-mediated endocytosis and activate TRPML1 thereafter, causing the release of lysosomal calcium ions. This, in turn, triggered the TFEB signaling pathway and thus upregulated the lysosomal exocytosis level, leading to lysosomal enzymes to be released to the intestinal lumen. As a result, a decreased number of intestinal goblet cells, diminished tight junction protein expression, and imbalanced intestinal flora in mice were observed. These damages to the intestinal barrier ultimately led to the occurrence of colitis. Our study offers important insights into the cellular bioeffects and detrimental effects on intestinal health caused by RS particles and emphasizes the need to re-evaluate the safety of long-term RS consumption.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30749–30760 30749–30760"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1021/acsnano.4c0804310.1021/acsnano.4c08043
Alexis Bigo-Simon, Leandro F. Estrozi, Alain Chaumont, Rachel Schurhammer, Guy Schoehn, Jérôme Combet*, Marc Schmutz*, Pierre Schaaf and Loïc Jierry*,
Short peptide-based supramolecular hydrogels appeared as highly interesting materials for applications in many fields. The optimization of their properties relies mainly on the design of a suitable hydrogelator through an empirical trial-and-error strategy based on the synthesis of various types of peptides. This approach is in part due to the lack of prior structural knowledge of the molecular architecture of the various families of nanofibers. The 3D structure of the nanofibers determines their ability to interact with entities present in their surrounding environment. Thus, it is important to resolve the internal structural organization of the material. Herein, using Fmoc-FFY tripeptide as a model amphiphilic hydrogelator and cryo-EM reconstruction approach, we succeeded to obtain a 3.8 Å resolution 3D structure of a self-assembled nanofiber with a diameter of approximately 4.1 nm and with apparently “infinite” length. The elucidation of the spatial organization of such nano-objects addresses fundamental questions about the way short amphiphilic N-Fmoc peptides lacking secondary structure can self-assemble and ensure the cohesion of such a lengthy nanostructure. This nanofiber is organized into a triple-stranded helix with an asymmetric unit composed of two Fmoc-FFY peptides per strand. The three identical amphiphilic strands are maintained together by strong lateral interactions coming from a 3-Fmoc zipper motif. This hydrophobic core of the nanofiber is surrounded by 12 phenyl groups from phenylalanine residues, nonplanar with the six Fmoc groups. Polar tyrosine residues at the C-term position constitute the hydrophilic shell and are exposed all around the external part of the assembly. This fiber has a highly hydrophobic central core with an internal diameter of only 2.4 Å. Molecular dynamics simulations highlight van der Waals and hydrogen bonds between peptides placed on top of each other. We demonstrate that the self-assembly of Fmoc-FFY, whether induced by annealing or by the action of a phosphatase on the phosphorylated precursor Fmoc-FFpY, results in two nanostructures with minor differences that we are unable to distinguish.
{"title":"3D Cryo-Electron Microscopy Reveals the Structure of a 3-Fluorenylmethyloxycarbonyl Zipper Motif Ensuring the Self-Assembly of Tripeptide Nanofibers","authors":"Alexis Bigo-Simon, Leandro F. Estrozi, Alain Chaumont, Rachel Schurhammer, Guy Schoehn, Jérôme Combet*, Marc Schmutz*, Pierre Schaaf and Loïc Jierry*, ","doi":"10.1021/acsnano.4c0804310.1021/acsnano.4c08043","DOIUrl":"https://doi.org/10.1021/acsnano.4c08043https://doi.org/10.1021/acsnano.4c08043","url":null,"abstract":"<p >Short peptide-based supramolecular hydrogels appeared as highly interesting materials for applications in many fields. The optimization of their properties relies mainly on the design of a suitable hydrogelator through an empirical trial-and-error strategy based on the synthesis of various types of peptides. This approach is in part due to the lack of prior structural knowledge of the molecular architecture of the various families of nanofibers. The 3D structure of the nanofibers determines their ability to interact with entities present in their surrounding environment. Thus, it is important to resolve the internal structural organization of the material. Herein, using Fmoc-FFY tripeptide as a model amphiphilic hydrogelator and cryo-EM reconstruction approach, we succeeded to obtain a 3.8 Å resolution 3D structure of a self-assembled nanofiber with a diameter of approximately 4.1 nm and with apparently “infinite” length. The elucidation of the spatial organization of such nano-objects addresses fundamental questions about the way short amphiphilic <i>N</i>-Fmoc peptides lacking secondary structure can self-assemble and ensure the cohesion of such a lengthy nanostructure. This nanofiber is organized into a triple-stranded helix with an asymmetric unit composed of two Fmoc-FFY peptides per strand. The three identical amphiphilic strands are maintained together by strong lateral interactions coming from a 3-Fmoc zipper motif. This hydrophobic core of the nanofiber is surrounded by 12 phenyl groups from phenylalanine residues, nonplanar with the six Fmoc groups. Polar tyrosine residues at the C-term position constitute the hydrophilic shell and are exposed all around the external part of the assembly. This fiber has a highly hydrophobic central core with an internal diameter of only 2.4 Å. Molecular dynamics simulations highlight van der Waals and hydrogen bonds between peptides placed on top of each other. We demonstrate that the self-assembly of Fmoc-FFY, whether induced by annealing or by the action of a phosphatase on the phosphorylated precursor Fmoc-FF<i>p</i>Y, results in two nanostructures with minor differences that we are unable to distinguish.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30448–30462 30448–30462"},"PeriodicalIF":15.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}