首页 > 最新文献

Journal of Graph Theory最新文献

英文 中文
Arc-disjoint out-branchings and in-branchings in semicomplete digraphs 半完整数图中的弧-不相连外分支和内分支
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-01-03 DOI: 10.1002/jgt.23072
J. Bang-Jensen, Y. Wang

An out-branching B� � u� � + ${B}_{u}^{+}$ (in-branching B� � u� � ${B}_{u}^{-}$) in a digraph D $D$ is a connected spanning subdigraph of D $D$ in which every vertex except the vertex u $u$, called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has k $k$ arc-disjoint out-branchings with prescribed roots (k $k$ is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is semicomplete if it has no pair of nonadjacent vertices. A tournament is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching B� � u� � + ${B}_{u}^{+}$ which is arc-disjoint from some in-branching B� � v� �
数图 D$D$ 中的外分支 Bu+${B}_{u}^{+}$(内分支 Bu-${B}_{u}^{-}$)是 D$D$ 的连跨子数图,其中除了顶点 u$u$(称为根)之外,每个顶点的内(外)度都是 1。众所周知,存在一种多项式算法来判定给定的图是否有 k$k$ 个带有规定根(k$k$ 是输入的一部分)的弧异节外分支。与此形成鲜明对比的是,判断一个数图是否有一个与某个内支弧相交的外支已经是 NP-complete。如果一个数图没有一对不相邻的顶点,那么它就是半完全数图。本文给出了半完整数图的完整分类,这些数图有一个外分支 Bu+${B}_{u}^{+}$,它与某个内分支 Bv-${B}_{v}^{-}$ 是弧相交的,其中 u,v$u,v$ 是 D$D$ 的规定顶点。我们的特征描述出奇地简单,它概括了第一作者 1991 年对锦标赛的复杂特征描述。我们的证明意味着存在一种多项式算法,可以检查给定的半完全数图是否有这样一对规定顶点 u,v$u,v$ 的分支,如果存在,则构建一个解。这证实了班-简森关于半完全图的猜想。
{"title":"Arc-disjoint out-branchings and in-branchings in semicomplete digraphs","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23072","DOIUrl":"10.1002/jgt.23072","url":null,"abstract":"<p>An out-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{+}$</annotation>\u0000 </semantics></math> (in-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{-}$</annotation>\u0000 </semantics></math>) in a digraph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> is a connected spanning subdigraph of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> in which every vertex except the vertex <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 </mrow>\u0000 <annotation> $u$</annotation>\u0000 </semantics></math>, called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> arc-disjoint out-branchings with prescribed roots (<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is <i>semicomplete</i> if it has no pair of nonadjacent vertices. A <i>tournament</i> is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>u</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${B}_{u}^{+}$</annotation>\u0000 </semantics></math> which is arc-disjoint from some in-branching <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>B</mi>\u0000 \u0000 <mi>v</mi>\u0000 \u0000 <mo","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New eigenvalue bound for the fractional chromatic number 分数色度数的新特征值约束
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-27 DOI: 10.1002/jgt.23071
Krystal Guo, Sam Spiro

Given a graph G $G$, we let s+(G) ${s}^{+}(G)$ denote the sum of the squares of the positive eigenvalues of the adjacency matrix of G $G$, and we similarly define s(G) ${s}^{-}(G)$. We prove that

给定一个图 G$G$,我们让 s+(G)${s}^{+}(G)$ 表示 G$G$ 的邻接矩阵正特征值的平方和,我们同样定义 s-(G)${s}^{-}(G)$。我们证明
{"title":"New eigenvalue bound for the fractional chromatic number","authors":"Krystal Guo,&nbsp;Sam Spiro","doi":"10.1002/jgt.23071","DOIUrl":"10.1002/jgt.23071","url":null,"abstract":"<p>Given a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, we let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${s}^{+}(G)$</annotation>\u0000 </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, and we similarly define <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${s}^{-}(G)$</annotation>\u0000 </semantics></math>. We prove that\u0000\u0000 </p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal linear-Vizing relationships for (total) domination in graphs 图中(完全)支配的最佳线性-Vizing 关系
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-18 DOI: 10.1002/jgt.23070
Michael A. Henning, Paul Horn

A total dominating set in a graph G $G$ is a set of vertices of G $G$ such that every vertex is adjacent to a vertex of the set. The total domination number γ� � t� � (� � G� � ) ${gamma }_{t}(G)$ is the minimum cardinality of a total dominating set in G $G$. In this paper, we study the following open problem posed by Yeo. For each Δ� � � � 3 ${rm{Delta }}ge 3$, find the smallest value, r� � Δ ${r}_{{rm{Delta }}}$, such that every connected graph G $G$ of order at least 3, of order n $n$, size m $m$, total domination number γ� � t ${gamma }_{t}$, and bounded maximum degree

图 G$G$ 中的总支配集是 G$G$ 的顶点集合,使得每个顶点都与该集合的一个顶点相邻。总支配数 γt(G)${gamma }_{t}(G)$ 是 G$G$ 中总支配集的最小心数。本文将研究 Yeo 提出的如下开放问题。对于每个 Δ≥3${rm{Delta }}ge 3$,求最小值 rΔ${r}_{{rm{/Delta}}$,使得每个阶数至少为 3 的连通图 G$G$,阶数为 n$n$,大小为 m$m$、总支配数 γt${gamma }_{t}$,以及有界最大度 Δ${rm{Delta }}$, 满足 m≤12(Δ+rΔ)(n-γt)$mle frac{1}{2}({rm{Delta }}+{r}_{{rm{Delta }}})(n-{gamma }_{t})$.Henning 证明了 rΔ≤Δ${r}_{{rm{Delta }}}le {rm{Delta }}$ for all Δ≥3${rm{Delta }}ge 3$。Yeo 大幅改进了这一结果,并证明 0.1ln(Δ)<rΔ≤2Δ$0.1mathrm{ln}({rm{Delta }})lt {r}_{{{rm{Delta }}}le 2sqrt{{{rm{Delta }}}$ for all Δ≥3${rm{Delta }}ge 3$、并提出了一个开放性问题,以确定 "rΔ${r}_{{rm{Delta }}$ 是否与 ln(Δ)$mathrm{ln}({rm{Delta }})$ 或 Δ$sqrt{{rm{Delta }}$ 或某个完全不同的函数成比例增长。"在本文中,我们确定了 rΔ${r}_{{rm{Delta }}$ 的增长,并证明 rΔ${r}_{{{rm{Delta }}$ 是渐近的 ln(Δ)$mathrm{ln}({rm{Delta }})$ ,同样也确定了标准支配的类似常数的渐近性。
{"title":"Optimal linear-Vizing relationships for (total) domination in graphs","authors":"Michael A. Henning,&nbsp;Paul Horn","doi":"10.1002/jgt.23070","DOIUrl":"10.1002/jgt.23070","url":null,"abstract":"<p>A total dominating set in a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a set of vertices of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>t</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${gamma }_{t}(G)$</annotation>\u0000 </semantics></math> is the minimum cardinality of a total dominating set in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}ge 3$</annotation>\u0000 </semantics></math>, find the smallest value, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>r</mi>\u0000 \u0000 <mi>Δ</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${r}_{{rm{Delta }}}$</annotation>\u0000 </semantics></math>, such that every connected graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of order at least 3, of order <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>, size <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>, total domination number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>t</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${gamma }_{t}$</annotation>\u0000 </semantics></math>, and bounded maximum degree <math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classes of intersection digraphs with good algorithmic properties 具有良好算法特性的交点图类
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-18 DOI: 10.1002/jgt.23065
Lars Jaffke, O-joung Kwon, Jan Arne Telle

While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected graphs, the role of intersection digraphs in algorithms is much less understood. We present several contributions towards a better understanding of the algorithmic treatment of intersection digraphs. First, we introduce natural classes of intersection digraphs that generalize several classes studied in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which capture many well-studied problems on digraphs, such as (Independent) Dominating SetKernel, and H $H$-Homomorphism. Third, we give a new width measure of digraphs, bi-mim-width, and show that the DLCV problems are polynomial-time solvable when we are provided a decomposition of small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time given an intersection representation of the input digraph. We identify reflexivity as a useful condition to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive algorithmic results.

虽然交集图在无向图难题的算法分析中发挥着核心作用,但人们对交集数图在算法中的作用却知之甚少。为了更好地理解交点图的算法处理,我们提出了几项贡献。首先,我们介绍了交点图的自然类,它们概括了文献中研究的几类交点图。其次,我们定义了有向局部可检查顶点(DLCV)问题,它捕捉了许多已被充分研究的数图问题,如(独立)占优集、核和 H$H$ 同构。第三,我们给出了一种新的数图宽度度量--bi-mim-width,并证明当我们得到一个小的 bi-mim-width 分解时,DLCV 问题是多项式时间可解的。第四,我们证明了几类交集数字图具有有界的 bi-mim-width,这意味着只要给定输入数字图的交集表示,我们就能在多项式时间内解决这几类数字图上的所有 DLCV 问题。我们发现,反身性是获得有界双米宽的交集数字图类的有用条件,因此也是获得积极算法结果的有用条件。
{"title":"Classes of intersection digraphs with good algorithmic properties","authors":"Lars Jaffke,&nbsp;O-joung Kwon,&nbsp;Jan Arne Telle","doi":"10.1002/jgt.23065","DOIUrl":"10.1002/jgt.23065","url":null,"abstract":"<p>While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected graphs, the role of intersection <i>digraphs</i> in algorithms is much less understood. We present several contributions towards a better understanding of the algorithmic treatment of intersection digraphs. First, we introduce natural classes of intersection digraphs that generalize several classes studied in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which capture many well-studied problems on digraphs, such as \u0000<span>(Independent) Dominating Set</span>, \u0000<span>Kernel</span>, and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-<span>Homomorphism.</span> Third, we give a new width measure of digraphs, <i>bi-mim-width</i>, and show that the DLCV problems are polynomial-time solvable when we are provided a decomposition of small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time given an intersection representation of the input digraph. We identify reflexivity as a useful condition to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive algorithmic results.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact values for some unbalanced Zarankiewicz numbers 一些不平衡扎兰凯维奇数的精确值
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-14 DOI: 10.1002/jgt.23068
Guangzhou Chen, Daniel Horsley, Adam Mammoliti

For positive integers s $s$, t $t$, m $m$ and n $n$, the Zarankiewicz number Zs� � ,� � t(m� � ,� � n� � ) ${Z}_{s,t}(m,n)$ is defined to be the maximum number of edges in a bipartite graph with parts of sizes m $m$ and n $n$ that has no complete bipartite subgraph containing s $s$ vertices in the part of size m $m$ and t $t$ vertices in the part of size

对于正整数 s$s$、t$t$、m$m$ 和 n$n$,Zarankiewicz 数 Zs,t(m,n)${Z}_{s,t}(m,n)$ 的定义是:在大小分别为 m$m$ 和 n$n$ 的双方形图中,没有包含大小为 m$m$ 的部分中的 s$s$ 顶点和大小为 n$n$ 的部分中的 t$t$ 顶点的完整双方形子图的最大边数。一个简单的论证表明,对于每个 t≥2$tge 2$,Z2,t(m,n)=(t-1)m2+n${Z}_{2,t}(m,n)=(t-1)left(genfrac{}{}0.0pt}{}{m}{2}right)+n$ 当 n≥(t-1)m2$nge (t-1)left(genfrac{}{}{0.0pt}{}{m}{2}right)$ 时。这里,对于大 m$m$,我们几乎确定了在 n=Θ(tm2)$n={rm{Theta }}(t{m}^{2})$ 的所有剩余情况下 Z2,t(m,n)${Z}_{2,t}(m,n)$的精确值。我们在 Z2,t(m,n)${Z}_{2,t}(m,n)$ 上建立了一个新的上界族,它补充了罗曼已经得到的一个族。然后我们证明,这些边界中最好的边界的下限几乎总是可以达到的。我们还证明,在有些情况下无法达到这个底限,而在另一些情况下,确定是否达到这个底限可能是一个非常困难的问题。我们的结果是通过线性超图的视角来证明的,我们的构造利用了关于密集图边分解的现有结果。
{"title":"Exact values for some unbalanced Zarankiewicz numbers","authors":"Guangzhou Chen,&nbsp;Daniel Horsley,&nbsp;Adam Mammoliti","doi":"10.1002/jgt.23068","DOIUrl":"10.1002/jgt.23068","url":null,"abstract":"<p>For positive integers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>, the Zarankiewicz number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>t</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${Z}_{s,t}(m,n)$</annotation>\u0000 </semantics></math> is defined to be the maximum number of edges in a bipartite graph with parts of sizes <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> that has no complete bipartite subgraph containing <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math> vertices in the part of size <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math> vertices in the part of size <math>\u0000 <semantics>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138679930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overfullness of edge-critical graphs with small minimal core degree 最小核心度较小的边缘关键图的过度丰满性
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-13 DOI: 10.1002/jgt.23069
Yan Cao, Guantao Chen, Guangming Jing, Songling Shan

Let G $G$ be a simple graph. Let Δ� � (� � G� � ) ${rm{Delta }}(G)$ and χ� � � � (� � G� � ) $chi ^{prime} (G)$ be the maximum degree and the chromatic index of G $G$, respectively. We call G $G$ overfull if � � E� � (� � G� � )� � � � � � � � � � V� � (� � G� � )� � � � � � 2� � � � >� � Δ� � (� � G� �

让 G$G$ 是一个简单图。让 Δ(G)${rm{Delta }}(G)$ 和 χ′(G)$chi ^{prime} (G)$ 分别为 G$G$ 的最大度数和色度指数。如果∣E(G)∣∕⌊∣V(G)∣∕2⌋>Δ(G)$| E(G)| unicode{x02215}lfloor | V(G)| unicode{x02215}2rfloor gt {rm{Delta }}(G)$ ,我们称 G$G$ 为 overfull;如果 χ′(H)<;χ′(G)$chi ^{prime} (H)lt chi ^{prime} (G)$ 对于 G$G$ 的每个适当子图 H$H$ 都是临界的。显然,如果 G$G$ 是过满的,那么 χ′(G)=Δ(G)+1$chi ^{prime} (G)={rm{Delta }}(G)+1$.G$G$ 的核心用 GΔ${G}_{{rm{Delta }}$ 表示,是由 G$G$ 的所有最大度顶点引起的子图。我们认为,利用核心度条件可以被视为攻克过全猜想的一种方法。沿着这个方向,我们在本文中证明,对于任意整数 k≥2$kge 2$、if G$G$ is critical with Δ(G)≥23n+3k2${rm{Delta }}(G)ge frac{2}{3}n+frac{3k}{2}$ and δ(GΔ)≤k$delta ({G}_{rm{Delta }}})le k$, then G$G$ is overfull.
{"title":"Overfullness of edge-critical graphs with small minimal core degree","authors":"Yan Cao,&nbsp;Guantao Chen,&nbsp;Guangming Jing,&nbsp;Songling Shan","doi":"10.1002/jgt.23069","DOIUrl":"10.1002/jgt.23069","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be a simple graph. Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}(G)$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mo>′</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $chi ^{prime} (G)$</annotation>\u0000 </semantics></math> be the maximum degree and the chromatic index of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, respectively. We call <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> <i>overfull</i> if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mrow>\u0000 <mo>⌊</mo>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>⌋</mo>\u0000 </mrow>\u0000 \u0000 <mo>&gt;</mo>\u0000 \u0000 <mi>Δ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138679918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza 边色完整图中的彩虹子图:回答厄尔多斯和图扎的两个问题
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-12 DOI: 10.1002/jgt.23063
Maria Axenovich, Felix C. Clemen

An edge-coloring of a complete graph with a set of colors C $C$ is called completely balanced if any vertex is incident to the same number of edges of each color from C $C$. Erdős and Tuza asked in 1993 whether for any graph F $F$ on $ell $ edges and any completely balanced coloring of any sufficiently large complete graph using $ell $ colors contains a rainbow copy of F $F$. This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques F=Kq $F={K}_{q}$ by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph F $F$.

如果任何顶点都与 C$C$ 中每种颜色的相同数量的边相连,则具有颜色集 C$C$ 的完整图的边着色称为完全平衡着色。厄多斯和图扎在 1993 年提出了这样一个问题:对于边上有 ℓ$ell $ 的任何图 F$F$,以及任何足够大的完整图的完全平衡着色(使用 ℓ$ell $ 颜色)是否包含 F$F$ 的彩虹副本?厄尔多斯在他的 "我最喜欢的一些循环和着色问题 "列表中重述了这个问题。我们通过给出各自完全平衡着色的明确构造,回答了大多数小群 F=Kq$F={K}_{q}$ 的否定问题。此外,我们还回答了一个与之相关的问题,即颜色数多于图 F$F$ 中边数的完整图的完全平衡着色。
{"title":"Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza","authors":"Maria Axenovich,&nbsp;Felix C. Clemen","doi":"10.1002/jgt.23063","DOIUrl":"10.1002/jgt.23063","url":null,"abstract":"<p>An edge-coloring of a complete graph with a set of colors <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $C$</annotation>\u0000 </semantics></math> is called <i>completely balanced</i> if any vertex is incident to the same number of edges of each color from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $C$</annotation>\u0000 </semantics></math>. Erdős and Tuza asked in 1993 whether for any graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation> $ell $</annotation>\u0000 </semantics></math> edges and any completely balanced coloring of any sufficiently large complete graph using <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation> $ell $</annotation>\u0000 </semantics></math> colors contains a rainbow copy of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>. This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $F={K}_{q}$</annotation>\u0000 </semantics></math> by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning kite-free planar graphs into two forests 将无筝平面图划分为两个森林
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-12 DOI: 10.1002/jgt.23062
Yang Wang, Yiqiao Wang, Ko-Wei Lih

A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.

风筝图是四个顶点上去掉一条边的完整图。研究证明,每个没有风筝子图的平面图都可以划分为两个诱导森林。这解决了 Raspaud 和 Wang 在 2008 年提出的一个猜想。
{"title":"Partitioning kite-free planar graphs into two forests","authors":"Yang Wang,&nbsp;Yiqiao Wang,&nbsp;Ko-Wei Lih","doi":"10.1002/jgt.23062","DOIUrl":"10.1002/jgt.23062","url":null,"abstract":"<p>A kite is a complete graph on four vertices with one edge removed. It is proved that every planar graph without a kite as subgraph can be partitioned into two induced forests. This resolves a conjecture of Raspaud and Wang in 2008.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Turán problems with bounded matching number 关于匹配数有界的图兰问题
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-06 DOI: 10.1002/jgt.23067
Dániel Gerbner

Very recently, Alon and Frankl initiated the study of the maximum number of edges in n $n$-vertex F $F$-free graphs with matching number at most s $s$. For fixed F $F$ and s $s$, we determine this number apart from a constant additive term. We also obtain several exact results.

最近,阿隆和弗兰克尔开始研究匹配数最多为 s$s$ 的 n$n$ 无顶点 F$F$ 图中的最大边数。对于固定的 F$F$ 和 s$s$,我们确定了除常数加法项之外的这一数目。我们还得到了几个精确结果。
{"title":"On Turán problems with bounded matching number","authors":"Dániel Gerbner","doi":"10.1002/jgt.23067","DOIUrl":"10.1002/jgt.23067","url":null,"abstract":"<p>Very recently, Alon and Frankl initiated the study of the maximum number of edges in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math>-free graphs with matching number at most <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>. For fixed <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> $F$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math>, we determine this number apart from a constant additive term. We also obtain several exact results.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138545944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5-Coloring reconfiguration of planar graphs with no short odd cycles 5 无奇数短周期平面图的着色重构
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2023-12-06 DOI: 10.1002/jgt.23064
Daniel W. Cranston, Reem Mahmoud

The coloring reconfiguration graph C� � k(� � G� � ) ${{mathscr{C}}}_{k}(G)$ has as its vertex set all the proper k $k$-colorings of G $G$, and two vertices in C� � k(� � G� � ) ${{mathscr{C}}}_{k}(G)$ are adjacent if their corresponding k $k$-colorings differ on a single vertex. Cereceda conjectured that if an n $n$-vertex graph G $G$ is d $d$-degenerate and k� � � � d� � +� � 2 $kge d+2$, then the diameter of C� � k(

着色重构图 Ck(G)${{{mathscr{C}}}_{k}(G)$ 的顶点集是 G$G$ 的所有适当 k$k$ 着色,如果 Ck(G)${{{mathscr{C}}}_{k}(G)$ 中的两个顶点在一个顶点上的 k$k$ 着色不同,则这两个顶点相邻。塞雷塞达猜想,如果一个 n$n$ 个顶点的图 G$G$ 是 d$d$ 退化的,并且 k≥d+2$kge d+2$,那么 Ck(G)${{{mathscr{C}}_{k}(G)$ 的直径是 O(n2)$O({n}^{2})$。布斯凯与海因里希证明,如果 G$G$ 是平面且双向的,那么 C5(G)${{{mathscr{C}}_{5}(G)$ 的直径是 O(n2)$O({n}^{2})$(这证明了对每一个退化度为 3 的此类图的塞雷塞达猜想。作为这个问题的部分解决方案,我们证明了对于每一个没有 3 循环和 5 循环的平面图 G$G$ ,C5(G)${{{mathscr{C}}}_{5}(G)$ 的直径都是 O(n2)$O({n}^{2})$ 。
{"title":"5-Coloring reconfiguration of planar graphs with no short odd cycles","authors":"Daniel W. Cranston,&nbsp;Reem Mahmoud","doi":"10.1002/jgt.23064","DOIUrl":"10.1002/jgt.23064","url":null,"abstract":"<p>The coloring reconfiguration graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathscr{C}}}_{k}(G)$</annotation>\u0000 </semantics></math> has as its vertex set all the proper <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorings of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, and two vertices in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathscr{C}}}_{k}(G)$</annotation>\u0000 </semantics></math> are adjacent if their corresponding <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math>-degenerate and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>d</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $kge d+2$</annotation>\u0000 </semantics></math>, then the diameter of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Graph Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1