首页 > 最新文献

Journal of Graph Theory最新文献

英文 中文
The maximum number of odd cycles in a planar graph 一个平面图中奇环的最大数目
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-11-10 DOI: 10.1002/jgt.23197
Emily Heath, Ryan R. Martin, Chris Wells

How many copies of a fixed odd cycle, C2� � m� � +� � 1 ${C}_{2m+1}$, can a planar graph contain? We answer this question asymptotically for m� � {2� � ,� � 3� � ,� � 4� � } $min {2,3,4}$ and prove a bound which is tight up to a factor of 3/2 for all other values of m $m$. This extends the prior results of Cox and Martin and of Lv, Győri, He, Salia, Tompkins, and Zhu on the analogous question for even cycles. Our bounds result from a reduction to the following maximum likelihood question: which probability mass μ $mu $ on the edges of some clique maximizes the probability that m $m$ edges sampled independently from μ $mu $ form either a cycle or a path?

一个平面图形可以包含多少个固定奇循环,c2m +1 ${C}_{2m+1}$ ?对于m∈{2,3,4}$ min {2,3,4}$并证明对于m$ m$的所有其他值的一个紧达3/2因子的界。这扩展了Cox和Martin以及Lv, Győri, He, Salia, Tompkins和Zhu关于偶循环的类似问题的先前结果。我们的边界来自于对以下最大似然问题的简化:哪个概率质量μ $mu $使独立于μ $mu $采样的m$ m$边形成循环或路径的概率最大化?
{"title":"The maximum number of odd cycles in a planar graph","authors":"Emily Heath,&nbsp;Ryan R. Martin,&nbsp;Chris Wells","doi":"10.1002/jgt.23197","DOIUrl":"https://doi.org/10.1002/jgt.23197","url":null,"abstract":"<p>How many copies of a fixed odd cycle, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>m</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{2m+1}$</annotation>\u0000 </semantics></math>, can a planar graph contain? We answer this question asymptotically for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $min {2,3,4}$</annotation>\u0000 </semantics></math> and prove a bound which is tight up to a factor of 3/2 for all other values of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>. This extends the prior results of Cox and Martin and of Lv, Győri, He, Salia, Tompkins, and Zhu on the analogous question for even cycles. Our bounds result from a reduction to the following maximum likelihood question: which probability mass <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> on the edges of some clique maximizes the probability that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> edges sampled independently from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation> $mu $</annotation>\u0000 </semantics></math> form either a cycle or a path?</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"745-780"},"PeriodicalIF":0.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odd chromatic number of graph classes 图类的奇色数
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-11-06 DOI: 10.1002/jgt.23200
Rémy Belmonte, Ararat Harutyunyan, Noleen Köhler, Nikolaos Melissinos

A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G $G$. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G $G$ is k $k$-odd colourable if it can be partitioned into at most k $k$ odd induced subgraphs. The odd chromatic number of G $G$, denoted by χ� � odd(� � G� � ) ${chi }_{text{odd}}(G)$, is the minimum integer k $k$ for which G $G$ is k $k$-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We fir

如果每个顶点都有奇数次(分别为偶数次)度,则称图为奇次(分别为偶数次)。Gallai证明了每个图都可以划分为两个偶诱导子图,或者划分为一个奇和一个偶诱导子图。我们把划分成奇数子图称为G的奇着色 $G$ . 斯科特证明了连通图当且仅当其顶点数为偶数时允许奇数着色。我们说一个图G $G$ k是多少? $k$ -奇数是可着色的,如果它能被划分成最多k $k$ 奇诱导子图。G的奇色数 $G$ ,用χ奇数(G)表示 ${chi }_{text{odd}}(G)$ ,是最小整数k $k$ 为什么? $G$ k是多少? $k$ -奇数可着色。对图类的奇着色和奇色数进行了系统的研究。我们首先考虑Scott提出的问题,即每个图G $G$ 偶n阶的 $n$ χ奇数(G)≤ck ${chi }_{text{odd}}(G)le csqrt{n}$ 对于某个正常数c $c$ ,通过证明G确实如此 $G$ 腰围限制在七岁以上。我们也证明了任意图G $G$ 其所有分量的偶数阶满足χ odd (G)≤2 Δ−1 ${chi }_{text{odd}}(G)le 2{rm{Delta }}-1$ ,其中Δ ${rm{Delta }}$ G的最大度是多少 $G$ . 其次,我们证明了某些有趣的类具有有界的奇色数。我们在这个方向上的主要结果是区间图、有界模宽度图都有界奇色数。特别地,每一个偶区间图都是6奇可着色的,每一个偶区间图都是3mw $3mw$ -奇数色,其中m w $mw$ 是图的模宽度。
{"title":"Odd chromatic number of graph classes","authors":"Rémy Belmonte,&nbsp;Ararat Harutyunyan,&nbsp;Noleen Köhler,&nbsp;Nikolaos Melissinos","doi":"10.1002/jgt.23200","DOIUrl":"https://doi.org/10.1002/jgt.23200","url":null,"abstract":"<p>A graph is called <i>odd</i> (respectively, <i>even</i>) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an <i>odd colouring</i> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-odd colourable if it can be partitioned into at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> odd induced subgraphs. The <i>odd chromatic number of</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>χ</mi>\u0000 \u0000 <mtext>odd</mtext>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${chi }_{text{odd}}(G)$</annotation>\u0000 </semantics></math>, is the minimum integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math> for which <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We fir","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"722-744"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of symmetry-preserving operations on 3-connectivity 对称保持运算对3-连通性的影响
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-11-04 DOI: 10.1002/jgt.23196
Heidi Van den Camp

In 2017, Brinkmann, Goetschalckx and Schein introduced a very general way of describing operations on embedded graphs that preserve all orientation-preserving symmetries of the graph. This description includes all well-known operations such as Dual, Truncation and Ambo. As these operations are applied locally, they are called local orientation-preserving symmetry-preserving operations (lopsp-operations). In this text, we will use the general description of these operations to determine their effect on 3-connectivity. Recently it was proved that all lopsp-operations preserve 3-connectivity of graphs that have face-width at least three. We present a simple condition that characterises exactly which lopsp-operations preserve 3-connectivity for all embedded graphs, even for those with face-width less than three.

2017年,Brinkmann, Goetschalckx和Schein引入了一种非常通用的方法来描述嵌入图上的操作,该操作保留了图的所有保向对称性。这个描述包括了所有众所周知的操作,如Dual, Truncation和Ambo。由于这些操作是局部应用的,它们被称为局部方向保持对称保持操作(lopsp-operation)。在本文中,我们将使用这些操作的一般描述来确定它们对3-连通性的影响。最近证明了面宽至少为3的图的所有lopsp运算都保持了3连通性。我们提出了一个简单的条件,该条件精确地描述了对于所有嵌入图,甚至对于那些面宽小于3的图,哪些losp操作保持3连通性。
{"title":"The effect of symmetry-preserving operations on 3-connectivity","authors":"Heidi Van den Camp","doi":"10.1002/jgt.23196","DOIUrl":"https://doi.org/10.1002/jgt.23196","url":null,"abstract":"<p>In 2017, Brinkmann, Goetschalckx and Schein introduced a very general way of describing operations on embedded graphs that preserve all orientation-preserving symmetries of the graph. This description includes all well-known operations such as Dual, Truncation and Ambo. As these operations are applied locally, they are called local orientation-preserving symmetry-preserving operations (lopsp-operations). In this text, we will use the general description of these operations to determine their effect on 3-connectivity. Recently it was proved that all lopsp-operations preserve 3-connectivity of graphs that have face-width at least three. We present a simple condition that characterises exactly which lopsp-operations preserve 3-connectivity for all embedded graphs, even for those with face-width less than three.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"672-704"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-arc-disjoint paths in semicomplete mixed graphs 半完全混合图中的边弧不相交路径
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-11-04 DOI: 10.1002/jgt.23199
J. Bang-Jensen, Y. Wang

The so-called weak-2-linkage problem asks for a given digraph D=(V,A) $D=(V,A)$ and distinct vertices s1,s2,t1,t2 ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$ of D $D$ whether D $D$ has arc-disjoint paths P1,P2 ${P}_{1},{P}_{2}$ so that Pi ${P}_{i}$ is an (s

所谓的弱2连杆问题要求给定有向图D = (V)A)$ D=(V,A)$和不同的顶点s 1, s 2,t1,t 2 ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$ D$ D$是否有弧不相交路径p1,P 2 ${P}_{1},{P}_{2}$,使得P i ${P}_{i}$是一个(S I, t I)$ ({S}_{I},{t}_{I})$ -path for I = 12$ i=1,2$。这个问题对于一般有向图来说是np完全的,但是第一作者证明了这个问题是多项式可解的,并且当D$ D$是一个半完全有向图,即一个没有一对非相邻顶点的有向图时,所有的例外都可以被表征。本文将这些结果推广到半完全混合图中边不相交和弧不相交的路径,即混合图M = (V,E∪A)$ M=(V,Ecup A)$其中每一对不同的顶点要么有一条弧,一条边,要么在它们之间既有弧又有边。我们给出了负实例的完整表征,并解释了这是如何产生一个多项式算法的问题。
{"title":"Edge-arc-disjoint paths in semicomplete mixed graphs","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23199","DOIUrl":"https://doi.org/10.1002/jgt.23199","url":null,"abstract":"<p>The so-called <i>weak-2-linkage problem</i> asks for a given digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 <mo>,</mo>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $D=(V,A)$</annotation>\u0000 </semantics></math> and distinct vertices <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>t</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>t</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> whether <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> has arc-disjoint paths <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${P}_{1},{P}_{2}$</annotation>\u0000 </semantics></math> so that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${P}_{i}$</annotation>\u0000 </semantics></math> is an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"705-721"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphs with girth 2 ℓ + 1 $2ell +1$ and without longer odd holes are 3-colorable 周长为2 +1$ 2ell +1$且没有较长的奇孔的图是三色的
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-30 DOI: 10.1002/jgt.23195
Rong Chen
<p>For a number <span></span><math> <semantics> <mrow> <mi>ℓ</mi> <mo>≥</mo> <mn>2</mn> </mrow> <annotation> $ell ge 2$</annotation> </semantics></math>, let <span></span><math> <semantics> <mrow> <msub> <mi>G</mi> <mi>ℓ</mi> </msub> </mrow> <annotation> ${{mathscr{G}}}_{ell }$</annotation> </semantics></math> denote the family of graphs which have girth <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>ℓ</mi> <mo>+</mo> <mn>1</mn> </mrow> <annotation> $2ell +1$</annotation> </semantics></math> and have no odd hole with length greater than <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>ℓ</mi> <mo>+</mo> <mn>1</mn> </mrow> <annotation> $2ell +1$</annotation> </semantics></math>. Wu et al. conjectured that every graph in <span></span><math> <semantics> <mrow> <msub> <mo>⋃</mo> <mrow> <mi>ℓ</mi> <mo>≥</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mi>ℓ</mi> </msub> </mrow> <annotation> ${bigcup }_{ell ge 2}{{mathscr{G}}}_{ell }$</annotation> </semantics></math> is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in <span></span><math> <semantics> <mrow> <msub> <mi>G</mi> <mn>2</mn> </msub> </mrow> <annotation> ${{mathscr{G}}}_{2}$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <msub> <mi>G</mi> <mn>3</mn> </msub> </mrow> <annotation> ${{mathscr{G}}}_{3}$</annotation> </semantics></math> is 3-colorable. In this paper, we prove that every graph in <span></span><math> <semantics> <mrow> <msub> <mo>⋃</mo> <mrow> <mi>ℓ</mi> <mo>≥</mo> <mn>5</mn> </mrow> </msub> <msub> <mi>G</mi> <mi
对于数≥2 $ell ge 2$,设G * * ${{mathscr{G}}}_{ell }$表示周长为2 * * + 1 $2ell +1$且不存在长度大于2 * *的奇孔的图族+ 1 $2ell +1$。Wu等人推测出,每个图在≤2 G≥${bigcup }_{ell ge 2}{{mathscr{G}}}_{ell }$是3色的。Chudnovsky et al.和Wu et al.分别证明了g2 ${{mathscr{G}}}_{2}$和g3 ${{mathscr{G}}}_{3}$中的每个图都是三色的。在这篇文章中,我们证明了每一个在≤5个G的图(${bigcup }_{ell ge 5}{{mathscr{G}}}_{ell }$)是3色的。
{"title":"Graphs with girth \u0000 \u0000 \u0000 2\u0000 ℓ\u0000 +\u0000 1\u0000 \u0000 $2ell +1$\u0000 and without longer odd holes are 3-colorable","authors":"Rong Chen","doi":"10.1002/jgt.23195","DOIUrl":"https://doi.org/10.1002/jgt.23195","url":null,"abstract":"&lt;p&gt;For a number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $ell ge 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{ell }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote the family of graphs which have girth &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $2ell +1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and have no odd hole with length greater than &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $2ell +1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Wu et al. conjectured that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⋃&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bigcup }_{ell ge 2}{{mathscr{G}}}_{ell }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathscr{G}}}_{3}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is 3-colorable. In this paper, we prove that every graph in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⋃&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"661-671"},"PeriodicalIF":0.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Face-simple minimal quadrangulations of surfaces 曲面的简单最小四边形
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-27 DOI: 10.1002/jgt.23198
Sarah Abusaif, Warren Singh, Timothy Sun

For each surface besides the sphere, projective plane, and Klein bottle, we construct a face-simple minimal quadrangulation, that is, a simple quadrangulation on the fewest number of vertices possible, whose dual is also a simple graph. Our result answers a question of Liu, Ellingham, and Ye while providing a simpler proof of their main result. The inductive construction is based on an earlier idea for finding near-quadrangular embeddings of the complete graphs using the diamond sum operation.

对于除球面、射影平面和克莱因瓶外的每一个曲面,我们构造了一个面简最小四边形,即顶点数尽可能少的简单四边形,其对偶也是一个简单图。我们的结果回答了Liu, Ellingham和Ye的一个问题,同时为他们的主要结果提供了一个更简单的证明。归纳构造是基于使用菱形和操作寻找完全图的近四边形嵌入的早期思想。
{"title":"Face-simple minimal quadrangulations of surfaces","authors":"Sarah Abusaif,&nbsp;Warren Singh,&nbsp;Timothy Sun","doi":"10.1002/jgt.23198","DOIUrl":"https://doi.org/10.1002/jgt.23198","url":null,"abstract":"<p>For each surface besides the sphere, projective plane, and Klein bottle, we construct a face-simple minimal quadrangulation, that is, a simple quadrangulation on the fewest number of vertices possible, whose dual is also a simple graph. Our result answers a question of Liu, Ellingham, and Ye while providing a simpler proof of their main result. The inductive construction is based on an earlier idea for finding near-quadrangular embeddings of the complete graphs using the diamond sum operation.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"647-655"},"PeriodicalIF":0.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved bounds on the cop number when forbidding a minor 改进了禁止未成年人使用警察号码的限制
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-13 DOI: 10.1002/jgt.23194
Franklin Kenter, Erin Meger, Jérémie Turcotte

Andreae proved that the cop number of connected � � H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001" wiley:location="equation/jgt23194-math-0001.png"><mrow><mrow><mi>H</mi></mrow></mrow></math>-minor-free graphs is bounded for every graph � � H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002" wiley:location="equation/jgt23194-math-0002.png"><mrow><mrow><mi>H</mi></mrow></mrow></math>. In particular, the cop number is at most � � � � E� � (� � H� � � � h� � )� � <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003" wiley:location="equation/jgt23194-math-0003.png"><mrow><mrow><mo>unicode{x02223}</mo><mi>E</mi><mrow><mo>(</mo><mrow><mi>H</mi><mo>unicode{x02212}</mo><mi>h</mi></mrow><mo>)</mo></mrow><mo>unicode{x02223}</mo></mrow></mrow></math> if � � H� � � � h <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004" wiley:location="equation/jgt23194-math-0004.png"><mrow><mrow>

Andreae证明了连接的H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001" wiley:location="equation/jgt23194-math-0001.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;-对每个图H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002" wiley:location="equation/jgt23194-math-0002.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;. 特别是,cop数至多为∣E (H−H)∣&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003”威利:位置= "方程/ jgt23194 -数学- 0003. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mo&gt; unicode {x02223} & lt; / mo&gt; & lt; mi&gt; E&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; unicode {x02212} & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; mo&gt; unicode {x02223} & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;if H−H &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004”威利:位置= "方程/ jgt23194 -数学- 0004. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; unicode {x02212} & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;不包含孤立顶点,其中h∈V (h) &lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23194: jgt23194 -数学- 0005“威利:位置=“方程/ jgt23194 -数学- 0005. - png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; h&lt; / mi&gt; & lt; mo&gt; unicode {x02208} & lt; / mo&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt h&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;. 本文的主要结果是对这一边界的改进,当H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006" wiley:location="equation/jgt23194-math-0006.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;是小的或稀疏的,当H−H &lt;math xmlns="http://www.w3.org/1998/Math/MathML" alti
{"title":"Improved bounds on the cop number when forbidding a minor","authors":"Franklin Kenter,&nbsp;Erin Meger,&nbsp;Jérémie Turcotte","doi":"10.1002/jgt.23194","DOIUrl":"https://doi.org/10.1002/jgt.23194","url":null,"abstract":"<p>Andreae proved that the cop number of connected <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001\" wiley:location=\"equation/jgt23194-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math>-minor-free graphs is bounded for every graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002\" wiley:location=\"equation/jgt23194-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math>. In particular, the cop number is at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>h</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003\" wiley:location=\"equation/jgt23194-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;unicode{x02223}&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;unicode{x02212}&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;unicode{x02223}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math> if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>h</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004\" wiley:location=\"equation/jgt23194-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"620-646"},"PeriodicalIF":0.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A localized approach for Turán number of long cycles 求解Turán长周期数的局部化方法
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-08 DOI: 10.1002/jgt.23191
Kai Zhao, Xiao-Dong Zhang

Let � � G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001" wiley:location="equation/jgt23191-math-0001.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> be a simple graph and � � c� � G� � (� � e� � ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002" wiley:location="equation/jgt23191-math-0002.png"><mrow><mrow><msub><mi>c</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></mrow></math> denote the length of the longest cycle containing an edge � � e <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003" wiley:location="equation/jgt23191-math-0003.png"><mrow><mrow><mi>e</mi></mrow></mrow></math> if there exists a cycle containing � � e <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004" wiley:location="equation/jgt23191-math-0004.png"><mrow><mrow><mi>e</mi></mrow></mrow></math>, and 2 otherwise. We prove that the summation of 2 divided by � � c� � G

Let G< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001" wiley:location="equation/jgt23191-math-0001.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;c G (e) <math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23191: jgt23191 -数学- 0002“威利:位置=“方程/ jgt23191 -数学- 0002. - png”祝辞& lt; mrow> & lt; mrow> & lt; msub> & lt; mi> c< / mi> & lt; mi> G< / mi> & lt; / msub> & lt; mrow> & lt; mo> (& lt; / mo> & lt; mi> e< / mi> & lt; mo>) & lt; / mo> & lt; / mrow> & lt; / mrow> & lt; / mrow> & lt; / math>表示包含边的最长循环的长度e<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003" wiley:location="equation/jgt23191-math-0003.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;如果存在包含e<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004“的循环,wiley:location=”equation/jgt23191-math-0004.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></math>;,否则为2。我们证明了2除以c的和G (e) <;数学xmlns = " http://www.w3.org/1998/Math/MathML " altimg = " urn: x-wiley: 03649024:媒体:jgt23191: jgt23191 -数学- 0005“威利:位置=“方程/ jgt23191 -数学- 0005. - png”祝辞& lt; mrow> & lt; mrow> & lt; msub> & lt; mi> c< / mi> & lt; mi> G< / mi> & lt; / msub> & lt; mrow> & lt; mo> (& lt; / mo> & lt; mi> e< / mi> & lt; mo>) & lt; / mo> & lt; / mrow> & lt; / mrow> & lt; / mrow> & lt; / math>在一个n<; math中的所有边上,xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0006 .png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></math>;-vertex graph G< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0007 .png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;<math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0008”威利:位置= "方程/ jgt23191 -数学- 0008. png”祝辞& lt; mrow> & lt; mrow> & lt; mi> n< / mi> & lt; mo> unicode {x02212} & lt; / mo> & lt; mn> 1 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math>,并描述所有n<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0009" wiley:location="equation/jgt23191-math-0009.png">< <mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;-顶点极值图,实现了界,从而扩展了经典的Erdős-Gallai循环定理。
{"title":"A localized approach for Turán number of long cycles","authors":"Kai Zhao,&nbsp;Xiao-Dong Zhang","doi":"10.1002/jgt.23191","DOIUrl":"https://doi.org/10.1002/jgt.23191","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0001\" wiley:location=\"equation/jgt23191-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math> be a simple graph and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>c</mi>\u0000 \u0000 <mi>G</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>e</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0002\" wiley:location=\"equation/jgt23191-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math> denote the length of the longest cycle containing an edge <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0003\" wiley:location=\"equation/jgt23191-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math> if there exists a cycle containing <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23191:jgt23191-math-0004\" wiley:location=\"equation/jgt23191-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\u0000 </semantics></math>, and 2 otherwise. We prove that the summation of 2 divided by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>c</mi>\u0000 \u0000 <mi>G</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"582-607"},"PeriodicalIF":0.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Switchover phenomenon for general graphs 一般图的切换现象
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-08 DOI: 10.1002/jgt.23184
Dániel Keliger, László Lovász, Tamás Ferenc Móri, Gergely Ódor

We study SIR-type epidemics (susceptible-infected-resistant) on graphs in two scenarios: (i) when the initial infections start from a well-connected central region and (ii) when initial infections are distributed uniformly. Previously, Ódor et al. demonstrated on a few random graph models that the expectation of the total number of infections undergoes a switchover phenomenon; the central region is more dangerous for small infection rates, while for large rates, the uniform seeding is expected to infect more nodes. We rigorously prove this claim under mild, deterministic assumptions on the underlying graph. If we further assume that the central region has a large enough expansion, the second moment of the degree distribution is bounded and the number of initial infections is comparable to the number of vertices, the difference between the two scenarios is shown to be macroscopic.

我们在两种情况下的图上研究了sir型流行病(易感-感染-抗性):(i)当初始感染开始于连接良好的中心区域时,以及(ii)当初始感染均匀分布时。先前,Ódor等人在几个随机图模型上证明了对感染总数的期望会发生切换现象;中部地区对于小感染率更危险,而对于大感染率,均匀播种预计会感染更多的节点。我们在底层图上温和的、确定性的假设下严格地证明了这一说法。如果我们进一步假设中心区域有足够大的膨胀,度分布的第二矩有界,初始感染数与顶点数相当,则两种情况之间的差异表现为宏观的。
{"title":"Switchover phenomenon for general graphs","authors":"Dániel Keliger,&nbsp;László Lovász,&nbsp;Tamás Ferenc Móri,&nbsp;Gergely Ódor","doi":"10.1002/jgt.23184","DOIUrl":"https://doi.org/10.1002/jgt.23184","url":null,"abstract":"<p>We study SIR-type epidemics (susceptible-infected-resistant) on graphs in two scenarios: (i) when the initial infections start from a well-connected central region and (ii) when initial infections are distributed uniformly. Previously, Ódor et al. demonstrated on a few random graph models that the expectation of the total number of infections undergoes a switchover phenomenon; the central region is more dangerous for small infection rates, while for large rates, the uniform seeding is expected to infect more nodes. We rigorously prove this claim under mild, deterministic assumptions on the underlying graph. If we further assume that the central region has a large enough expansion, the second moment of the degree distribution is bounded and the number of initial infections is comparable to the number of vertices, the difference between the two scenarios is shown to be macroscopic.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"560-581"},"PeriodicalIF":0.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Nash-Williams orientation conjecture for infinite graphs 无限图的Nash-Williams方向猜想
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2024-10-08 DOI: 10.1002/jgt.23192
Amena Assem
<p>In 1960 Nash-Williams proved that an edge-connectivity of <span></span><math> <semantics> <mrow> <mrow> <mn>2</mn> <mi>k</mi> </mrow> </mrow> <annotation> <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001" wiley:location="equation/jgt23192-math-0001.png"><mrow><mrow><mn>2</mn><mi>k</mi></mrow></mrow></math></annotation> </semantics></math> is sufficient for a finite graph to have a <span></span><math> <semantics> <mrow> <mrow> <mi>k</mi> </mrow> </mrow> <annotation> <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002" wiley:location="equation/jgt23192-math-0002.png"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation> </semantics></math>-arc-connected orientation. He then conjectured that the same is true for infinite graphs. In 2016, Thomassen, using his own results on the auxiliary <i>lifting graph</i>, proved that <span></span><math> <semantics> <mrow> <mrow> <mn>8</mn> <mi>k</mi> </mrow> </mrow> <annotation> <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003" wiley:location="equation/jgt23192-math-0003.png"><mrow><mrow><mn>8</mn><mi>k</mi></mrow></mrow></math></annotation> </semantics></math>-edge-connected infinite graphs admit a <span></span><math> <semantics> <mrow> <mrow> <mi>k</mi> </mrow> </mrow> <annotation> <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004" wiley:location="equation/jgt23192-math-0004.png"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation> </semantics></math>-arc-connected orientation. Here we improve this result for the class of one-ended locally finite graphs and show that an edge-connectivity of <span></span><math> <semantics> <mrow> <mrow> <mn>4</mn>
1960年,Nash-Williams证明了2 k的边连通性<;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001”威利:位置= "方程/ jgt23192 -数学- 0001. png”祝辞& lt; mrow> & lt; mrow> & lt; mn> 2 & lt; / mn> & lt; mi> k< / mi> & lt; / mrow> & lt; / mrow> & lt; / math>对于有限图来说,k< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002" wiley:location="equation/jgt23192-math-0002.png"><mrow><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;-arc-connected取向。然后他推测无限图也是如此。2016年,托马森利用他自己在辅助提升图上的研究结果,证明了8 k<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003" wiley:location="equation/jgt23192-math-0003.png"><mrow><mrow>< mrow><mrow> k</ mrow></mrow></ mrow></mrow></ mrow></mrow></ mrow></math>;​-边连接无限图承认k<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004" wiley:location="equation/jgt23192-math-0004.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></ mrow></math>;-arc-connected取向。这里,我们对一类单端局部有限图改进了这一结果,并证明了4 k的边连通性<;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0005”威利:位置= "方程/ jgt23192 -数学- 0005. png”祝辞& lt; mrow> & lt; mrow> & lt; mn> 4 & lt; / mn> & lt; mi> k< / mi> & lt; / mrow> & lt; / mrow> & lt; / math>在这种情况下就足够了。这一改进的关键是本文同一作者在另一篇论文中提出的关于提升图关键概念的结果,扩展了Ok, Richter和Thomassen的结果。
{"title":"Towards Nash-Williams orientation conjecture for infinite graphs","authors":"Amena Assem","doi":"10.1002/jgt.23192","DOIUrl":"https://doi.org/10.1002/jgt.23192","url":null,"abstract":"&lt;p&gt;In 1960 Nash-Williams proved that an edge-connectivity of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0001\" wiley:location=\"equation/jgt23192-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is sufficient for a finite graph to have a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0002\" wiley:location=\"equation/jgt23192-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-arc-connected orientation. He then conjectured that the same is true for infinite graphs. In 2016, Thomassen, using his own results on the auxiliary &lt;i&gt;lifting graph&lt;/i&gt;, proved that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0003\" wiley:location=\"equation/jgt23192-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-edge-connected infinite graphs admit a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23192:jgt23192-math-0004\" wiley:location=\"equation/jgt23192-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-arc-connected orientation. Here we improve this result for the class of one-ended locally finite graphs and show that an edge-connectivity of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"608-619"},"PeriodicalIF":0.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Graph Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1