首页 > 最新文献

Journal of Graph Theory最新文献

英文 中文
Note on Hamiltonicity of Basis Graphs of Even Delta-Matroids 关于偶阵基图的哈密性的注记
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-20 DOI: 10.1002/jgt.23237
Donggyu Kim, Sang-il Oum

We show that the basis graph of an even delta-matroid is Hamiltonian if it has more than two vertices. More strongly, we prove that for two distinct edges � � e and � � f sharing a common end, it has a Hamiltonian cycle using � � e and avoiding � � f unless it has at most two vertices or it is a cycle of length at most four. We also prove that if the basis graph is not a hypercube graph, then each vertex belongs to cycles of every length � � � � � � 3, and each edge belongs to cycles of every length � � � � � � 4. For the last theorem, we provide two proofs, one of which uses the result of Naddef (1984) on polytopes and the result of Chepoi (2007) on basis graphs of even delta-matroids, and the other is a direct proof using various properties of even delta-matroids. Our theorems generalize the analogous results for matroids by Holzmann and Harary (1972) and Bondy and Ingleton (1976).

我们证明了偶阵的基图是哈密顿的,如果它有两个以上的顶点。更强的是,我们证明了对于两条不同的边e和f有一个共同的端点,它有一个哈密顿循环,使用e,避免使用f,除非它最多有两个顶点,或者它是一个长度最多为4的循环。我们还证明了如果基图不是超立方图,则每个顶点属于每个长度为r≥3的环,且每条边都属于长度≥4的环。对于最后一个定理,我们提供了两个证明,一个是利用Naddef(1984)关于多面体的结果和Chepoi(2007)关于偶三角拟阵基图的结果,另一个是利用偶三角拟阵的各种性质的直接证明。我们的定理推广了Holzmann和Harary(1972)以及Bondy和Ingleton(1976)对拟阵的类似结果。
{"title":"Note on Hamiltonicity of Basis Graphs of Even Delta-Matroids","authors":"Donggyu Kim,&nbsp;Sang-il Oum","doi":"10.1002/jgt.23237","DOIUrl":"https://doi.org/10.1002/jgt.23237","url":null,"abstract":"<p>We show that the basis graph of an even delta-matroid is Hamiltonian if it has more than two vertices. More strongly, we prove that for two distinct edges <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> sharing a common end, it has a Hamiltonian cycle using <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and avoiding <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> unless it has at most two vertices or it is a cycle of length at most four. We also prove that if the basis graph is not a hypercube graph, then each vertex belongs to cycles of every length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, and each edge belongs to cycles of every length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. For the last theorem, we provide two proofs, one of which uses the result of Naddef (1984) on polytopes and the result of Chepoi (2007) on basis graphs of even delta-matroids, and the other is a direct proof using various properties of even delta-matroids. Our theorems generalize the analogous results for matroids by Holzmann and Harary (1972) and Bondy and Ingleton (1976).</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"446-453"},"PeriodicalIF":0.9,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sharper Ramsey Theorem for Constrained Drawings 约束图的一个sharperramsey定理
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-17 DOI: 10.1002/jgt.23226
Pavel Paták
<p>Given a graph <span></span><math> <semantics> <mrow> <mrow> <mi>G</mi> </mrow> </mrow> </semantics></math> and a collection <span></span><math> <semantics> <mrow> <mrow> <mi>C</mi> </mrow> </mrow> </semantics></math> of subsets of <span></span><math> <semantics> <mrow> <mrow> <msup> <mi>R</mi> <mi>d</mi> </msup> </mrow> </mrow> </semantics></math> indexed by the subsets of vertices of <span></span><math> <semantics> <mrow> <mrow> <mi>G</mi> </mrow> </mrow> </semantics></math>, a constrained drawing of <span></span><math> <semantics> <mrow> <mrow> <mi>G</mi> </mrow> </mrow> </semantics></math> is a drawing where each edge is drawn inside some set from <span></span><math> <semantics> <mrow> <mrow> <mi>C</mi> </mrow> </mrow> </semantics></math>, in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey-type result for such drawings. Furthermore, we show how the results can be used to obtain Helly-type theorems. More precisely, we prove the following. For each <span></span><math> <semantics> <mrow> <mrow> <mi>n</mi> </mrow> </mrow> </semantics></math> and <span></span><math> <semantics> <mrow> <mrow> <mi>b</mi> </mrow> </mrow> </semantics></math>, there is <span></span><math> <semantics> <mrow> <mrow> <mi>N</mi> <mo>=</mo> <mi>O</mi> <mrow> <mo>(</mo> <msup>
给定一个图G和R的子集C的集合d由G的顶点子集索引,G的约束图是这样一种图,其中每条边都画在C的某个集合内,以这样一种方式,不相邻的边画在指标不相交的集合中。本文证明了这类图的一个ramsey型结果。此外,我们还展示了如何使用这些结果来获得helly型定理。更准确地说,我们证明了以下几点。
{"title":"A Sharper Ramsey Theorem for Constrained Drawings","authors":"Pavel Paták","doi":"10.1002/jgt.23226","DOIUrl":"https://doi.org/10.1002/jgt.23226","url":null,"abstract":"&lt;p&gt;Given a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and a collection &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of subsets of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; indexed by the subsets of vertices of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a constrained drawing of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a drawing where each edge is drawn inside some set from &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey-type result for such drawings. Furthermore, we show how the results can be used to obtain Helly-type theorems. More precisely, we prove the following. For each &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;msup&gt;\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"401-411"},"PeriodicalIF":0.9,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berge's Conjecture for Cubic Graphs With Small Colouring Defect 具有小着色缺陷的三次图的Berge猜想
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-16 DOI: 10.1002/jgt.23231
Ján Karabáš, Edita Máčajová, Roman Nedela, Martin Škoviera

A long-standing conjecture of Berge suggests that every bridgeless cubic graph can be expressed as a union of at most five perfect matchings. This conjecture trivially holds for 3-edge-colourable cubic graphs, but remains widely open for graphs that are not 3-edge-colourable. The aim of this paper is to verify the validity of Berge's conjecture for cubic graphs that are in a certain sense close to 3-edge-colourable graphs. We measure the closeness by looking at the colouring defect, which is defined as the minimum number of edges left uncovered by any collection of three perfect matchings. While 3-edge-colourable graphs have defect 0, every bridgeless cubic graph with no 3-edge-colouring has defect at least 3. In 2015, Steffen proved that the Berge conjecture holds for cyclically 4-edge-connected cubic graphs with colouring defect 3 or 4. Our aim is to improve Steffen's result in two ways. We show that all bridgeless cubic graphs with defect 3 satisfy Berge's conjecture irrespectively of their cyclic connectivity. If, additionally, the graph in question is cyclically 4-edge-connected, then four perfect matchings suffice, unless the graph is the Petersen graph. The result is best possible as there exists an infinite family of cubic graphs with cyclic connectivity 3 which have defect 3 but cannot be covered with four perfect matchings.

Berge的一个长期猜想表明,每一个无桥三次图都可以表示为至多五个完美匹配的并。这个猜想对于3边可着色的三次图来说是平凡的,但是对于非3边可着色的图来说仍然是广泛开放的。本文的目的是在一定意义上接近三边可着色图的三次图上验证Berge猜想的有效性。我们通过观察着色缺陷来衡量接近度,着色缺陷被定义为三个完美匹配的任何集合所未覆盖的最小边缘数量。3边可着色图缺陷为0,无3边着色的无桥三次图缺陷至少为3。2015年,Steffen证明了Berge猜想对于具有3或4色缺陷的循环4边连通三次图成立。我们的目标是从两个方面改进Steffen的结果。证明了所有缺陷为3的无桥三次图不论其循环连通性如何都满足Berge猜想。此外,如果所讨论的图是循环四边连接的,那么四个完美匹配就足够了,除非该图是Petersen图。当存在无限的具有循环连通性3的三次图族,它们有缺陷3,但不能被四个完美匹配覆盖时,结果是最好的。
{"title":"Berge's Conjecture for Cubic Graphs With Small Colouring Defect","authors":"Ján Karabáš,&nbsp;Edita Máčajová,&nbsp;Roman Nedela,&nbsp;Martin Škoviera","doi":"10.1002/jgt.23231","DOIUrl":"https://doi.org/10.1002/jgt.23231","url":null,"abstract":"<div>\u0000 \u0000 <p>A long-standing conjecture of Berge suggests that every bridgeless cubic graph can be expressed as a union of at most five perfect matchings. This conjecture trivially holds for 3-edge-colourable cubic graphs, but remains widely open for graphs that are not 3-edge-colourable. The aim of this paper is to verify the validity of Berge's conjecture for cubic graphs that are in a certain sense close to 3-edge-colourable graphs. We measure the closeness by looking at the colouring defect, which is defined as the minimum number of edges left uncovered by any collection of three perfect matchings. While 3-edge-colourable graphs have defect 0, every bridgeless cubic graph with no 3-edge-colouring has defect at least 3. In 2015, Steffen proved that the Berge conjecture holds for cyclically 4-edge-connected cubic graphs with colouring defect 3 or 4. Our aim is to improve Steffen's result in two ways. We show that all bridgeless cubic graphs with defect 3 satisfy Berge's conjecture irrespectively of their cyclic connectivity. If, additionally, the graph in question is cyclically 4-edge-connected, then four perfect matchings suffice, unless the graph is the Petersen graph. The result is best possible as there exists an infinite family of cubic graphs with cyclic connectivity 3 which have defect 3 but cannot be covered with four perfect matchings.</p></div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"387-396"},"PeriodicalIF":0.9,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformally Rigid Graphs 共形刚性图
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-11 DOI: 10.1002/jgt.23229
Stefan Steinerberger, Rekha R. Thomas

Given a finite, simple, connected graph � � G� � =� � (� � V� � ,� � E� � ) with � � � � V� � � � =� � n, we consider the associated graph Laplacian matrix � � L� � =� � D� � � � A with eigenvalues � � 0� � =� � λ� � 1� � <� � λ� � 2� � � � � � � � λ� � n. One can also consider the same graph equipped with positive edge weights � � w� �

给定一个有限简单连通图G = (V),E)与∣V∣= n,我们考虑特征值为0的关联图拉普拉斯矩阵L = D−Aλ 1 &lt;λ 2≤λ n。也可以考虑具有正边权w的图:E→R &gt;0归一化到∑e∈ewe =∣e∣和相关的加权拉普拉斯矩阵Lw . 我们说G是保形刚性的如果恒边权使第二个特征值λ 2 (w) (L w / w)最小化λ n (w ')lw '除以所有w‘,也就是说,对于所有的w, w ’,λ 2 (w)≤λ 2(1)≤λ n(1)≤λ n (w ')。保形刚度在G中需要大量的结构。每一个边传递图都是保角刚性的。我们证明了每一个距离正则图,从而每一个强正则图,都是保角刚性的。某些特殊的图嵌入可以用来表征保形刚度。
{"title":"Conformally Rigid Graphs","authors":"Stefan Steinerberger,&nbsp;Rekha R. Thomas","doi":"10.1002/jgt.23229","DOIUrl":"https://doi.org/10.1002/jgt.23229","url":null,"abstract":"<div>\u0000 \u0000 <p>Given a finite, simple, connected graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>E</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, we consider the associated graph Laplacian matrix <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>L</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mi>D</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>A</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> with eigenvalues <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>0</mn>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <msub>\u0000 <mi>λ</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>&lt;</mo>\u0000 \u0000 <msub>\u0000 <mi>λ</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mo>⋯</mo>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <msub>\u0000 <mi>λ</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. One can also consider the same graph equipped with positive edge weights <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>w</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"366-386"},"PeriodicalIF":0.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalue Approach to Dense Clusters in Hypergraphs
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-02 DOI: 10.1002/jgt.23218
Yuly Billig

In this article, we investigate the problem of finding in a given weighted hypergraph a subhypergraph with the maximum possible density. Using the notion of a support matrix we prove that the density of an optimal subhypergraph is equal to � � � � A� � T� � A� � for an optimal support matrix � � A. Alternatively, the maximum density of a subhypergraph is equal to the solution of a minimax problem for column sums of support matrices. We study the density decomposition of a hypergraph and show that it is a significant refinement of the Dulmage–Mendelsohn decomposition. Our theoretical results yield an efficient algorithm for finding the maximum density subhypergraph and more generally, the density decomposition for a given weighted hypergraph.

在本文中,我们研究了在给定的加权超图中寻找具有最大可能密度的子超图的问题。利用支持矩阵的概念证明了最优子超图的密度等于∥a→T→a→∥求最优支持矩阵A。或者,子超图的最大密度等于支持矩阵列和的极大极小问题的解。我们研究了超图的密度分解,并证明了它是Dulmage-Mendelsohn分解的一个重要改进。我们的理论结果产生了一种有效的算法,用于寻找最大密度子超图,更一般地说,用于给定加权超图的密度分解。
{"title":"Eigenvalue Approach to Dense Clusters in Hypergraphs","authors":"Yuly Billig","doi":"10.1002/jgt.23218","DOIUrl":"https://doi.org/10.1002/jgt.23218","url":null,"abstract":"<p>In this article, we investigate the problem of finding in a given weighted hypergraph a subhypergraph with the maximum possible density. Using the notion of a support matrix we prove that the density of an optimal subhypergraph is equal to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∥</mo>\u0000 \u0000 <msup>\u0000 <mi>A</mi>\u0000 \u0000 <mi>T</mi>\u0000 </msup>\u0000 \u0000 <mi>A</mi>\u0000 \u0000 <mo>∥</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> for an optimal support matrix <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. Alternatively, the maximum density of a subhypergraph is equal to the solution of a minimax problem for column sums of support matrices. We study the density decomposition of a hypergraph and show that it is a significant refinement of the Dulmage–Mendelsohn decomposition. Our theoretical results yield an efficient algorithm for finding the maximum density subhypergraph and more generally, the density decomposition for a given weighted hypergraph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"353-365"},"PeriodicalIF":0.9,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23218","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List Packing and Correspondence Packing of Planar Graphs 平面图的列表填充与对应填充
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-24 DOI: 10.1002/jgt.23222
Daniel W. Cranston, Evelyne Smith-Roberge

For a graph � � G and a list assignment � � L with � � � � L� � (� � v� � )� � � � =� � k for all � � v, an � � L-packing consists of � � L-colorings � � φ� � 1� � ,� � � � ,� � φ� � k such that � � φ� � i� � (� � v

对于图G和一个表赋值L具有∣L (V)∣= k对于所有V,L -填料由L -色φ 1组成,……φ k使得φ I (v)≠φ j (v)V和所有不同的I,J∈{1,…,K}。 设χ n - (G)表示最小值k使得G对每一个L都有L -填料∣L (v)∣= k对于所有的v。设kp表示所有周长至少为k的平面图的集合。我们证明了(i) χ z - (G)≤对于所有G∈p3和(ii) χ对于所有的向量,都可以用n - n (G)≤5G∈p0, (iii) χ _1 -(G)≤4对于所有G∈P 5。第一部分对Cambie, Cames van Batenburg, Davies和Kang的问题进行了进展。 我们还考虑了对应着色的χ n -百科的类比,χ c—事实上,上述所有关于χ n -的边界也适用于χ c⋆ .
{"title":"List Packing and Correspondence Packing of Planar Graphs","authors":"Daniel W. Cranston,&nbsp;Evelyne Smith-Roberge","doi":"10.1002/jgt.23222","DOIUrl":"https://doi.org/10.1002/jgt.23222","url":null,"abstract":"<div>\u0000 \u0000 <p>For a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and a list assignment <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>L</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>v</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-packing consists of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-colorings <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>φ</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>φ</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>φ</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>v</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"339-352"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of Vertices Required a High-Degree Condition on Partitions of Graphs Under Degree Constraints 度约束下图分区上顶点分布的高度条件
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-16 DOI: 10.1002/jgt.23228
Michitaka Furuya, Shun-ichi Maezawa

Let � � G be a graph, and let � � f� � 1� � ,� � f� � 2� � :� � V� � (� � G� � )� � � � {� � 0� � ,� � 1� � ,� � 2� � ,� � � � } be functions. Let � � T� � 1� � (� � G� � ) be the union of edges shared by two cycles of order at most four, and let � � T� � 0� � (� �

设G是一个图,设f (1)F 2:V (g)→{0,1, 2,…}是函数。设t1 (G)为两个最大为4阶的环共享的边的并集,令t0 (G) = V(g) t 1 (g)。 设G是一个图,设f (1)F 2:V (g)→{0,1, 2,…}是函数。设t1 (G)为两个最大为4阶的环共享的边的并集,令t0 (G) = V(g) t 1 (g)。在本文中,我们证明如果对于u∈T h (G)h∈{0,1};d G (u)≥f1 (u) + f2
{"title":"Distribution of Vertices Required a High-Degree Condition on Partitions of Graphs Under Degree Constraints","authors":"Michitaka Furuya,&nbsp;Shun-ichi Maezawa","doi":"10.1002/jgt.23228","DOIUrl":"https://doi.org/10.1002/jgt.23228","url":null,"abstract":"<div>\u0000 \u0000 <p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a graph, and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>f</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>:</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>→</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mn>0</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be functions. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be the union of edges shared by two cycles of order at most four, and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mn>0</mn>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"315-331"},"PeriodicalIF":0.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143945030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Average Solution of a TSP Instance in a Graph 图中TSP实例的平均解
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-16 DOI: 10.1002/jgt.23232
Stijn Cambie

We define the average � � k-TSP distance � � μ� � tsp� � ,� � k of a graph � � G as the average length of a shortest closed walk visiting � � k vertices, that is, the expected length of the solution for a random TSP instance with � � k uniformly random chosen vertices. We prove relations with the average � � k-Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for � � μ� � tsp� � ,� � k� � (� � G� � ) given the order of the graph.

我们定义k -TSP平均距离μ tsp,取图G的k为经过k个顶点的最短封闭行走的平均长度,即:具有k个一致随机选择顶点的随机TSP实例的解的期望长度。我们用平均k -Steiner距离证明了这种关系,并描述了等式发生的情况。我们也给出了μ tsp的明确界限,k (G)给出图的阶数。
{"title":"The Average Solution of a TSP Instance in a Graph","authors":"Stijn Cambie","doi":"10.1002/jgt.23232","DOIUrl":"https://doi.org/10.1002/jgt.23232","url":null,"abstract":"<div>\u0000 \u0000 <p>We define the average <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-TSP distance <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 \u0000 <mrow>\u0000 <mtext>tsp</mtext>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> as the average length of a shortest closed walk visiting <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> vertices, that is, the expected length of the solution for a random TSP instance with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> uniformly random chosen vertices. We prove relations with the average <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-Steiner distance and characterize the cases where equality occurs. We also give sharp bounds for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 \u0000 <mrow>\u0000 <mtext>tsp</mtext>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> given the order of the graph.</p>\u0000 </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"332-338"},"PeriodicalIF":0.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143945031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independent Sets of Random Trees and Sparse Random Graphs 随机树和稀疏随机图的独立集
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-10 DOI: 10.1002/jgt.23225
Steven Heilman

An independent set of size � � k in a finite undirected graph � � G is a set of � � k vertices of the graph, no two of which are connected by an edge. Let � � x� � k� � (� � G� � ) be the number of independent sets of size � � k in the graph � � G and let � � α� � (� � G� � )� � =� � max� � {� � k� � � � 0� �

有限无向图G中大小为k的独立集是k的集合图的顶点,其中没有两个被一条边连接。设x k (G)为图G中大小为k的独立集合,设α(G) = max {k≥0 :x k (G)≠0}。1987年,阿拉维,马尔德,施文克,Erdős询问独立集合序列x 0 (G), x1 (G),... ,x α (G)(G)是单峰的(序列先上升后下降)。这个问题仍然悬而未决。2006年,Levit和Mandrescu证明了树的独立集合序列的最后三分之一是递减的。我们展示了前46个。 随机树中8%的独立集合序列随着顶点数量趋于无穷而呈(指数)高概率增长。所以,关于Alavi, Malde, Schwenk和Erdős的问题有“五分之四正确”的高概率。我们还展示了Erdős-Rényi随机图的独立集合序列的单模性,当单个顶点的期望程度很大时(随着图中顶点的数量趋于无穷,除了模态附近的一个小区域外,具有[指数]高概率)。对于随机正则图,给出了较弱的结果。大小为k的独立集合随k变化的结构在概率、统计物理、组合学和计算机科学中都很有趣。
{"title":"Independent Sets of Random Trees and Sparse Random Graphs","authors":"Steven Heilman","doi":"10.1002/jgt.23225","DOIUrl":"https://doi.org/10.1002/jgt.23225","url":null,"abstract":"<p>An independent set of size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in a finite undirected graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> vertices of the graph, no two of which are connected by an edge. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>x</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be the number of independent sets of size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in the graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>α</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mi>max</mi>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>0</mn>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"294-309"},"PeriodicalIF":0.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refining Tree-Decompositions so That They Display the k-Blocks 改进树分解,使它们显示k块
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-10 DOI: 10.1002/jgt.23230
Sandra Albrechtsen

Carmesin and Gollin proved that every finite graph has a canonical tree-decomposition � � (� � T� � ,� � V� � ) of adhesion less than � � k that efficiently distinguishes every two distinct � � k-profiles, and which has the further property that every separable � � k-block is equal to the unique part of � � (� � T� � ,� � V� � ) in which it is contained. We give a shorter proof of this result by showing that such a tree-decomposition can in fact be obtained from any canonical tight tree-decomposition of adhesion less than � � k. For this, we decompose the parts of such a tree-decomposition by further tree-decompositions. As an application, we also obtain a generalization of Carmesin and Gollin's result to locally finite graphs.

Carmesin和Gollin证明了每个有限图都有一个正则树分解(T,V)的附着力小于k,有效地区分每两个不同的k - 概要文件,它还有一个进一步的性质,即每一个可分离的k块都等于(T)的唯一部分, V)它被包含在其中。我们通过证明这样的树分解实际上可以从任何小于k的附着力正则紧树分解中得到,从而给出了这个结果的一个简短的证明。为此,我们通过进一步的树分解来分解这种树分解的各个部分。作为应用,我们也得到了Carmesin和Gollin结果在局部有限图上的推广。
{"title":"Refining Tree-Decompositions so That They Display the k-Blocks","authors":"Sandra Albrechtsen","doi":"10.1002/jgt.23230","DOIUrl":"https://doi.org/10.1002/jgt.23230","url":null,"abstract":"<p>Carmesin and Gollin proved that every finite graph has a canonical tree-decomposition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>V</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of adhesion less than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> that efficiently distinguishes every two distinct <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-profiles, and which has the further property that every separable <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-block is equal to the unique part of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>V</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in which it is contained. We give a shorter proof of this result by showing that such a tree-decomposition can in fact be obtained from any canonical tight tree-decomposition of adhesion less than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. For this, we decompose the parts of such a tree-decomposition by further tree-decompositions. As an application, we also obtain a generalization of Carmesin and Gollin's result to locally finite graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"310-314"},"PeriodicalIF":0.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Graph Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1