首页 > 最新文献

Journal of Graph Theory最新文献

英文 中文
Inclusion chromatic index of random graphs 随机图的包含色度指数
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-14 DOI: 10.1002/jgt.23088
Jakub Kwaśny, Jakub Przybyło
Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.
Erdős 和 Wilson 于 1977 年证明,几乎所有图形的色度指数都等于其最大度数。2001 年,Balister 扩展了这一结果,并证明如果我们额外要求任意两个顶点的颜色集是不同的,那么相同数量的颜色几乎总是足够的。我们研究了一个更强的条件,并证明如果禁止任何一对相邻顶点包含这些颜色集,那么多一种颜色几乎总是充分且必要的。我们还确定了一个几乎适用于所有图形的限制性更强的图形不变式的价值,即禁止包含所有顶点对,这就要求偶数阶图形多一种颜色。
{"title":"Inclusion chromatic index of random graphs","authors":"Jakub Kwaśny, Jakub Przybyło","doi":"10.1002/jgt.23088","DOIUrl":"https://doi.org/10.1002/jgt.23088","url":null,"abstract":"Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139838073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree criteria and stability for independent transversals 独立横轴的度数标准和稳定性
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-14 DOI: 10.1002/jgt.23085
Penny Haxell, Ronen Wdowinski

An independent transversal (IT) in a graph G $G$ with a given vertex partition P ${mathscr{P}}$ is an independent set of vertices of G $G$ (i.e., it induces no edges), that consists of one vertex from each part (block) of P ${mathscr{P}}$. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of P ${mathscr{P}}$ being t $t$-thick, meaning all blocks have size at least t $t$. One such result, obtained recently by Wanless and Wood, is based on the maximum average block degree b(G,P)=max{uUd

具有给定顶点分区 P ${mathscr{P}}$ 的图 G $G$ 中的独立横向(IT)是 G $G$ 的一个独立顶点集合(即它不引起任何边),它由 P ${mathscr{P}}$ 的每个部分(块)的一个顶点组成。多年来,人们建立了各种标准来保证 IT 的存在,这些标准通常以 P ${mathscr{P}}$ 厚度为 t $t$ 的条件给出,即所有块的大小至少为 t $t$。其中一个结果是 Wanless 和 Wood 最近得到的,它基于最大平均块度 b ( G , P ) = max { ∑ u∈ U d ( u ) ∕ ∣ U ∣ : U∈ P }。 $b(G,{mathscr{P}})=max {{sum }_{uin U}d(u)unicode{x02215}| U| :Uin {mathscr{P}}}$ 。他们证明了如果 b ( G , P ) ≤ t ∕ 4 $b(G,{mathscr{P}})le tunicode{x02215}4$ 则存在一个 IT。
{"title":"Degree criteria and stability for independent transversals","authors":"Penny Haxell,&nbsp;Ronen Wdowinski","doi":"10.1002/jgt.23085","DOIUrl":"https://doi.org/10.1002/jgt.23085","url":null,"abstract":"<p>An <i>independent transversal</i> (IT) in a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> with a given vertex partition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{P}}$</annotation>\u0000 </semantics></math> is an independent set of vertices of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> (i.e., it induces no edges), that consists of one vertex from each part (<i>block</i>) of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{P}}$</annotation>\u0000 </semantics></math>. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{P}}$</annotation>\u0000 </semantics></math> being <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-<i>thick</i>, meaning all blocks have size at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>. One such result, obtained recently by Wanless and Wood, is based on the <i>maximum average block degree</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>,</mo>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mi>max</mi>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <msub>\u0000 <mo>∑</mo>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 <mo>∈</mo>\u0000 <mi>U</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mi>d</mi>\u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inclusion chromatic index of random graphs 随机图的包含色度指数
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-14 DOI: 10.1002/jgt.23088
Jakub Kwaśny, Jakub Przybyło

Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.

Erdős 和 Wilson 于 1977 年证明,几乎所有图形的色度指数都等于其最大度数。2001 年,Balister 扩展了这一结果,并证明如果我们额外要求任意两个顶点的颜色集是不同的,那么相同数量的颜色几乎总是足够的。我们研究了一个更强的条件,并证明如果禁止任何一对相邻顶点包含这些颜色集,那么多一种颜色几乎总是充分且必要的。我们还确定了一个几乎适用于所有图形的限制性更强的图形不变式的价值,即禁止包含所有顶点对,这就要求偶数阶图形多一种颜色。
{"title":"Inclusion chromatic index of random graphs","authors":"Jakub Kwaśny,&nbsp;Jakub Przybyło","doi":"10.1002/jgt.23088","DOIUrl":"10.1002/jgt.23088","url":null,"abstract":"<p>Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139778461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On tree decompositions whose trees are minors 关于树为未成年人的树分解
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-11 DOI: 10.1002/jgt.23083
Pablo Blanco, Linda Cook, Meike Hatzel, Claire Hilaire, Freddie Illingworth, Rose McCarty

In 2019, Dvořák asked whether every connected graph G $G$ has a tree decomposition (� � T� � ,� � B� � ) $(T,{rm{ {mathcal B} }})$ so that T $T$ is a subgraph of G $G$ and the width of (� � T� � ,� � B� � ) $(T,{rm{ {mathcal B} }})$ is bounded by a function of the treewidth of G $G$. We prove that this is false, even when G $G$ has treewidth 2 and T $T$ is allowed to be a minor of G $G$.

2019 年,德沃夏克提出了一个问题:是否每个连通图 G$G$ 都有一个树分解 (T,B)$(T,{rm{ {mathcal B} }})$,从而 T$T$ 是 G$G$ 的子图,并且 (T,B)$(T,{rm{ {mathcal B} }})$ 的宽度受 G$G$ 树宽的函数约束?我们证明,即使 G$G$ 的树宽为 2 且允许 T$T$ 是 G$G$ 的次要图,这也是错误的。
{"title":"On tree decompositions whose trees are minors","authors":"Pablo Blanco,&nbsp;Linda Cook,&nbsp;Meike Hatzel,&nbsp;Claire Hilaire,&nbsp;Freddie Illingworth,&nbsp;Rose McCarty","doi":"10.1002/jgt.23083","DOIUrl":"10.1002/jgt.23083","url":null,"abstract":"<p>In 2019, Dvořák asked whether every connected graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> has a tree decomposition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>B</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(T,{rm{ {mathcal B} }})$</annotation>\u0000 </semantics></math> so that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> is a subgraph of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> and the width of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>B</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(T,{rm{ {mathcal B} }})$</annotation>\u0000 </semantics></math> is bounded by a function of the treewidth of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. We prove that this is false, even when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> has treewidth 2 and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> is allowed to be a minor of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum degree stability of C 2 k + 1 ${C}_{2k+1}$ -free graphs 无 C 2 k + 1 图形的最小度稳定性
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-11 DOI: 10.1002/jgt.23086
Xiaoli Yuan, Yuejian Peng

We consider the minimum degree stability of graphs forbidding odd cycles: What is the tight bound on the minimum degree to guarantee that the structure of a C� � 2� � k� � +� � 1 ${C}_{2k+1}$-free graph inherits from the extremal graph (a balanced complete bipartite graph)? Andrásfai, Erdős, and Sós showed that if a {� � C� � 3� � ,� � C� � 5� � ,� � � � ,� � C� � 2� � k� � +� � 1� � } ${{C}_{3},{C}_{5},ldots ,{C}_{2k+1}}$-free graph on n $n$ vertices has minimum degree greater than 2� � 2� � k� � +� � 3� � n $frac{2}{2k+3}n$, then it is bipartite. Häggkvist showed that for

我们考虑的是禁止奇数循环的图的最小度稳定性:要保证不含 C2k+1${C}_{2k+1}$ 的图的结构继承于极值图(平衡的完整二叉图),最小度数的严格约束是什么?Andrásfai、Erdős 和 Sós 发现,如果 n$n$ 个顶点上的{C3,C5,...,C2k+1}${{C}_{3},{C}_{5},ldots ,{C}_{2k+1}}$ 无顶图的最小度大于 22k+3n$/frac{2}{2k+3}n$,那么它是双向图。Häggkvist 证明了对于 k∈{1,2,3,4}$kin {1,2,3,4/}$,如果 n$n$ 个顶点上的无 C2k+1${C}_{2k+1}$ 图的最小度大于 22k+3n$/frac{2}{2k+3}n$,那么它是双方形的。海格奎斯特还指出,这一结果无法扩展到 k≥5$kge 5$。在本文中,我们给出了任意 k≥5$kge 5$ 的完整答案。我们证明,如果 k≥5$kge 5$ 并且 G$G$ 是一个 n$n$-vertex C2k+1${C}_{2k+1}$-free graph,δ(G)≥n6+1$delta (G)ge frac{n}{6}+1$,那么 G$G$ 是双分部图,并且约束 n6+1$frac{n}{6}+1$ 是紧密的。
{"title":"Minimum degree stability of \u0000 \u0000 \u0000 \u0000 C\u0000 \u0000 2\u0000 k\u0000 +\u0000 1\u0000 \u0000 \u0000 \u0000 ${C}_{2k+1}$\u0000 -free graphs","authors":"Xiaoli Yuan,&nbsp;Yuejian Peng","doi":"10.1002/jgt.23086","DOIUrl":"10.1002/jgt.23086","url":null,"abstract":"<p>We consider the minimum degree stability of graphs forbidding odd cycles: What is the tight bound on the minimum degree to guarantee that the structure of a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{2k+1}$</annotation>\u0000 </semantics></math>-free graph inherits from the extremal graph (a balanced complete bipartite graph)? Andrásfai, Erdős, and Sós showed that if a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mn>3</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mn>5</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mtext>…</mtext>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation> ${{C}_{3},{C}_{5},ldots ,{C}_{2k+1}}$</annotation>\u0000 </semantics></math>-free graph on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> vertices has minimum degree greater than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>2</mn>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mfrac>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $frac{2}{2k+3}n$</annotation>\u0000 </semantics></math>, then it is bipartite. Häggkvist showed that for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integer flows on triangularly connected signed graphs 三角形连接有符号图上的整数流
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-08 DOI: 10.1002/jgt.23076
Liangchen Li, Chong Li, Rong Luo, Cun-Quan Zhang

A triangle-path in a graph G $G$ is a sequence of distinct triangles T� � 1� � ,� � T� � 2� � ,� � � � ,� � T� � m ${T}_{1},{T}_{2},ldots ,{T}_{m}$ in G $G$ such that for any i� � ,� � j $i,j$ with 1� � � � i� � <� � j� � � � m $1le ilt jle m$, � � E(� � T� � i� � )� � � � E(� � Ti� � +� � 1
图 G$G$ 中的三角形路径是一连串不同的三角形 T1,T2,......。,Tm${T}_{1},{T}_{2},ldots,{T}_{m}$在 G$G$中,对于任意 i,j$i,j$,1≤i<;j≤m$1le ilt jle m$, ∣E(Ti)∩E(Ti+1)∣=1$| E({T}_{i})cap E({T}_{i+1})| =1$ 和 E(Ti)∩E(Tj)=∅$E({T}_{i})cap E({T}_{j})=varnothing $ if j>i+1$jgt i+1$.如果对于任意两条不平行的边 e$e$ 和 e′$e^{prime} $ 有一条三角形-路径 T1T2⋯Tm${T}_{1}{T}_{2}cdots {T}_{m}$ ,使得 e∈E(T1)$ein E({T}_{1})$ 和 e′∈E(Tm)$e^{prime}in E({T}_{m})$.对于普通图,Fan 等人描述了所有允许无处为零的 3 流或 4 流的三角形连接图。这一结果的推论包括一些普通图族的整数流,如 Lai 提出的局部连通图和 Imrich 等人提出的某些类型的图积。我们证明,当且仅当一个流动可容许的三角形连接有符号图不是与特定签名相关的轮 W5${W}_{5}$时,它才容许一个无处为零的 4 流。此外,这个结果是尖锐的,因为有无限多的不平衡三角形连接有符号图允许无处为零的 4 流,但不允许 3 流。
{"title":"Integer flows on triangularly connected signed graphs","authors":"Liangchen Li,&nbsp;Chong Li,&nbsp;Rong Luo,&nbsp;Cun-Quan Zhang","doi":"10.1002/jgt.23076","DOIUrl":"10.1002/jgt.23076","url":null,"abstract":"<p>A triangle-path in a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a sequence of distinct triangles <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>…</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mi>m</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${T}_{1},{T}_{2},ldots ,{T}_{m}$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that for any <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>i</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>j</mi>\u0000 </mrow>\u0000 <annotation> $i,j$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mi>i</mi>\u0000 \u0000 <mo>&lt;</mo>\u0000 \u0000 <mi>j</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $1le ilt jle m$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∩</mo>\u0000 \u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msub>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mi>i</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</m","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the width of sparse random graphs 关于稀疏随机图宽度的说明
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-08 DOI: 10.1002/jgt.23081
Tuan Anh Do, Joshua Erde, Mihyun Kang

In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) $G(n,p)$ when p=1+ϵn $p=frac{1+epsilon }{n}$ for ϵ>0 $epsilon gt 0$ constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on ϵ $epsilon $. Finally, we also consider the width of the random graph in the weakly supercritical regime, where ϵ=o(1) $epsilon =o(1)$ and ϵ3n ${epsilon }^{3}nto infty $

在本说明中,我们根据一些常用的宽度度量来考虑超临界随机图的宽度。当 p = 1 + ϵ n $p=frac{1+epsilon }{n}$ 为 ϵ > 0 $epsilon gt 0$ 常量时,我们给出了 Lee、Lee 和 Oum 以及 Perarnau 和 Serra 关于随机图 G ( n , p ) $G(n,p)$ 的秩宽度和树宽度的简短而直接的证明。我们的证明避免了使用关于巨分量在这一制度下的膨胀特性的黑箱结果,因此作为进一步的好处,我们得到了这些结果对 ϵ $epsilon $ 的依赖性的明确约束。最后,我们还考虑了弱超临界状态下随机图的宽度,此时ϵ = o ( 1 ) $epsilon =o(1)$ 且 ϵ 3 n → ∞ ${epsilon }^{3}nto infty $ 。在这一机制中,我们确定 G ( n , p ) $G(n,p)$ 的秩宽和树宽为 n $n$ 和 ϵ $epsilon $ 的函数,直到一个恒定的乘法因子。
{"title":"A note on the width of sparse random graphs","authors":"Tuan Anh Do,&nbsp;Joshua Erde,&nbsp;Mihyun Kang","doi":"10.1002/jgt.23081","DOIUrl":"https://doi.org/10.1002/jgt.23081","url":null,"abstract":"<p>In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $G(n,p)$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mfrac>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>ϵ</mi>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation> $p=frac{1+epsilon }{n}$</annotation>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ϵ</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> $epsilon gt 0$</annotation>\u0000 </semantics></math> constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ϵ</mi>\u0000 </mrow>\u0000 <annotation> $epsilon $</annotation>\u0000 </semantics></math>. Finally, we also consider the width of the random graph in the <i>weakly supercritical regime</i>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ϵ</mi>\u0000 <mo>=</mo>\u0000 <mi>o</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $epsilon =o(1)$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>ϵ</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <mi>n</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation> ${epsilon }^{3}nto infty $</annotati","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lower bound for the complex flow number of a graph: A geometric approach 图的复流数下限:几何方法
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-02-04 DOI: 10.1002/jgt.23075
Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli

Let r2 $rge 2$ be a real number. A complex nowhere-zero r $r$-flow on a graph G $G$ is an orientation of G $G$ together with an assignment φ:E(G)C $varphi :E(G)to {mathbb{C}}$ such that, for all eE(G) $ein E(G)$, the Euclidean norm of the complex number φ(e) $varphi (e)$ lies in the interval [1,r1] $[1,r-1]$ and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph G $G$

设 r ≥ 2 $rge 2$ 为实数。图 G $G$ 上的复数无处-零 r $r$ -流是 G $G$ 的一个取向以及一个赋值 φ : E ( G ) → C $varphi :E(G)to {mathbb{C}}$ ,这样,对于所有 e∈ E ( G ) $ein E(G)$ ,复数 φ ( e ) $varphi (e)$ 的欧氏规范位于区间 [ 1 , r - 1 ]。 $[1,r-1]$ 并且,对于每个顶点,流入流量等于流出流量。无桥图 G $G$ 的复流数用 ϕ C ( G ) ${phi }_{{mathbb{C}}}(G)$ 表示,是实数 r $r$ 中的最小值,使得 G $G$ 可以容纳无处为零的复 r $r$ 流。即使对于非常小的对称图,精确计算 ϕ C ${phi }_{mathbb{C}}$ 似乎也是一项艰巨的任务。特别是,j C ${phi }_{mathbb{C}}$的精确值只有在可以微不足道地证明下界的图族中才是已知的。在这里,我们利用几何和组合论证,以立方图 G $G$ 的奇数周长(即最短奇数周期的长度)为单位,给出了 ϕ C ( G ) ${phi }_{mathbb{C}}(G)$ 的非微不足道的下界,并证明这个下界是严密的。这一结果依赖于车轮图 W n ${W}_{n}$ 复流数的精确计算。特别是,我们证明了对于每一个奇数 n $n$ ,ϕ C ( W n ) ${phi }_{{mathbb{C}}}({W}_{n})$ 的值产生于复数平面中根据 n $n$ modulo 6 的同余式的三个合适配置点之一。
{"title":"A lower bound for the complex flow number of a graph: A geometric approach","authors":"Davide Mattiolo,&nbsp;Giuseppe Mazzuoccolo,&nbsp;Jozef Rajník,&nbsp;Gloria Tabarelli","doi":"10.1002/jgt.23075","DOIUrl":"https://doi.org/10.1002/jgt.23075","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 <mo>≥</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $rge 2$</annotation>\u0000 </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math>-flow on a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is an orientation of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> together with an assignment <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 <mo>:</mo>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>→</mo>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $varphi :E(G)to {mathbb{C}}$</annotation>\u0000 </semantics></math> such that, for all <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mo>∈</mo>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $ein E(G)$</annotation>\u0000 </semantics></math>, the Euclidean norm of the complex number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>e</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $varphi (e)$</annotation>\u0000 </semantics></math> lies in the interval <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>r</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation> $[1,r-1]$</annotation>\u0000 </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On two cycles of consecutive even lengths 在两个连续偶数长度的周期上
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-01-24 DOI: 10.1002/jgt.23074
Jun Gao, Binlong Li, Jie Ma, Tianying Xie

Bondy and Vince showed that every graph with minimum degree at least three contains two cycles of lengths differing by one or two. We prove the following average degree counterpart that every n $n$-vertex graph G $G$ with at least 5� � 2� � (� � n� � � � 1� � ) $frac{5}{2}(n-1)$ edges, unless 4� � |� � (� � n� � � � 1� � ) $4|(n-1)$ and every block of G $G$ is a clique K� � 5 ${K}_{5}$, contains two cycles of consecutive even lengths. Our proof is mainly based on structural analysis, and a crucial step which may be of independent interest shows that the same conclusion holds for every 3-connected graph with at least six vertices. This solves a special case of a conjecture of Verstraëte. The quantitative bound is tight and also provides the optimal extremal number for cycles of length two modulo four.

邦迪和文斯证明了每个最小度数至少为 3 的图都包含两个长度相差 1 或 2 的循环。我们证明了以下平均度对应关系:除非 4|(n-1)$4|(n-1)$且 G$G$ 的每个块都是一个小群 K5${K}_{5}$,否则每个至少有 52(n-1)$frac{5}{2}(n-1)$ 边的 n$n$顶点图 G$G$ 都包含两个连续偶数长度的循环。我们的证明主要基于结构分析,其中一个关键步骤可能会引起独立的兴趣,它表明对于每一个至少有六个顶点的三连图,同样的结论都成立。这解决了 Verstraëte 猜想的一个特例。这个定量约束非常严密,而且还提供了长度为 2 modulo 4 的循环的最佳极值数。
{"title":"On two cycles of consecutive even lengths","authors":"Jun Gao,&nbsp;Binlong Li,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23074","DOIUrl":"10.1002/jgt.23074","url":null,"abstract":"<p>Bondy and Vince showed that every graph with minimum degree at least three contains two cycles of lengths differing by one or two. We prove the following average degree counterpart that every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> with at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>5</mn>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $frac{5}{2}(n-1)$</annotation>\u0000 </semantics></math> edges, unless <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 \u0000 <mo>|</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $4|(n-1)$</annotation>\u0000 </semantics></math> and every block of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a clique <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>5</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{5}$</annotation>\u0000 </semantics></math>, contains two cycles of consecutive even lengths. Our proof is mainly based on structural analysis, and a crucial step which may be of independent interest shows that the same conclusion holds for every 3-connected graph with at least six vertices. This solves a special case of a conjecture of Verstraëte. The quantitative bound is tight and also provides the optimal extremal number for cycles of length two modulo four.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A proof of Frankl–Kupavskii's conjecture on edge-union condition 弗兰克尔-库帕夫斯基关于边缘联合条件猜想的证明
IF 0.9 3区 数学 Q2 Mathematics Pub Date : 2024-01-07 DOI: 10.1002/jgt.23073
Hongliang Lu, Xuechun Zhang

A 3-graph � � F ${rm{ {mathcal F} }}$ is � � U� � (� � s� � ,� � 2� � s� � +� � 1� � ) $U(s,2s+1)$ if for any � � s $s$ edges � � e� � 1� � ,� � � � ,� � e� � s� � � � E� � (� � F� � ) ${e}_{1},ldots ,{e}_{s}in E({rm{ {mathcal F} }})$, � � � � e� � 1� � � � � �

一个 3 图 F${{rm{ {mathcal F}U(s,2s+1)$U(s,2s+1)$ If for any s$s$ edges e1,...,es∈E(F)${e}_{1},ldots ,{e}_{s}in E({rm{ {mathcal F} }})$, ∣e1∪⋯∪es∣≤2s+1$| {e}_{1}cup cdots cup {e}_{s}| le 2s+1$.弗兰克尔和库帕夫斯基提出了以下猜想:对于任意 3 图 F${rm{ {mathcal F}}$ 有 n$n$ 个顶点,如果 F${rm{ {mathcal F}}}$ 是 U(s,2s+1)$U(s,2s+1)$, 那么
{"title":"A proof of Frankl–Kupavskii's conjecture on edge-union condition","authors":"Hongliang Lu,&nbsp;Xuechun Zhang","doi":"10.1002/jgt.23073","DOIUrl":"10.1002/jgt.23073","url":null,"abstract":"<p>A 3-graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal F} }}$</annotation>\u0000 </semantics></math> is <math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>U</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mi>s</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $U(s,2s+1)$</annotation>\u0000 </semantics></math> if for any <math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math> edges <math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>…</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${e}_{1},ldots ,{e}_{s}in E({rm{ {mathcal F} }})$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>∪</mo>\u0000 \u0000 <mtext>⋯</mtext>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Graph Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1