Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Immunotherapy resistance in bladder cancer (BLCA) is associated with elevated levels of sialic acid-binding immunoglobulin-like lectin (Siglec15). This protein plays a crucial role in fostering a noninflammatory tumor microenvironment (TME), which is conducive to cancer progression. Our study confirmed that the overexpression of Siglec15 led to a reduction in CD8+ T cell infiltration. This effect was mediated by the downregulation of pro-inflammatory cytokines and chemokines, which in turn exacerbated BLCA malignancy. Furthermore, Siglec15 inhibited the cytotoxicity of effector T cell, contributing to immune evasion. An in vivo study demonstrated that Siglec15 overexpression induced a non-inflammatory TME and promoted resistance to immunotherapy. These findings highlight Siglec15 as a potential therapeutic target for BLCA. By modulating inflammation in the TME and CD8+ T cell function, targeting Siglec15 may offer a novel strategy for overcoming immunotherapy resistance and improving patient outcomes.
CAR-macrophage has promising prospect in treating solid tumors, due to its high infiltration into tumors, and its dual roles in phagocytosis and immune modulation. Here we show the clinical results of CAR-macrophage treatment of two ovarian cancer patients. The CAR-macrophages were produced by introducing a mesothelin targeting CAR to patients' primary peripheral blood mononuclear cell-derived macrophages, and the products were infused to patients intravenously. Our data show good safety of the infusion product, and the efficacy can be further improved. Intraperitoneal infusion of CAR-macrophages has proven effective in treating intraperitoneal tumors in a preclinical model, paving the way for demonstrating proof-of-concept clinical efficacy of CAR-macrophages in the treatment of intraperitoneal tumors.
The AML treatment landscape has significantly changed in recent years with the approval of targeted therapies in the front-line and relapsed/refractory settings, including inhibitors of FLT3 and IDH1/2 mutations. More importantly, approval of the combination of the BCl-2 inhibitor, venetoclax, and hypomethylating agents or low dose cytarabine provided unprecedented breakthrough for the frontline treatment of older, unfit AML patients. Even with all this exciting progress, more targeted therapies for AML treatment are needed. Recent development of menin inhibitors targeting AML with KMT2A rearrangements or NPM1 mutations could represent a promising new horizon of treatment for patients within these subsets of AML. Our current review will focus on a summary and updates of recent developments of menin inhibitors in the treatment of AML, on the challenges ahead arising from drug resistance, as well as on the opportunities of novel combinations with menin inhibitors.