Pub Date : 2023-03-01Epub Date: 2023-03-24DOI: 10.1369/00221554231161396
Erik Mørk, Patricia Mjønes, Olav A Foss, Ingeborg M Bachmann, Eidi Christensen
Photodynamic therapy (PDT) is an effective and cosmetically beneficial treatment of low-risk basal cell carcinomas (BCCs). To optimize PDT response, it is important to correctly select tumors. We sought to find markers that could identify such tumors beyond contributions from clinical and histological examination. Studies have shown that β-catenin, E-cadherin, and α-smooth muscle actin (SMA) expression can indicate BCC aggressiveness/BCC invasiveness. We wanted to use these markers in an explorative study to investigate whether they were differently expressed among non-recurring compared with recurring BCCs, to evaluate their ability of predicting PDT outcome. Fifty-two BCCs were stained with antibodies against β-catenin, E-cadherin, and α-SMA, and evaluated using immunoreactive score (IRS), subcellular localization, and stromal protein expression. Results showed that IRS of E-cadherin was significantly different among recurring compared with non-recurring BCCs and with area under a receiver operating characteristic curve of 0.71 (95% confidence interval: 0.56-0.86, p=0.025). Stromal β-catenin expression significantly increased among recurring BCCs. Some recurring BCCs had intense expression in the deep invading tumor edge. In conclusion, E-cadherin, and stromal and deep edge β-catenin expression were most prominent in BCCs that recurred post-PDT, suggesting they could potentially predict PDT outcome. Further studies are needed to investigate whether these results are of clinical value.
{"title":"Expression of β-Catenin, E-Cadherin, and α-Smooth Muscle Actin in Basal Cell Carcinoma Before Photodynamic Therapy in Non-recurrent and Recurrent Tumors: Exploring the Ability of Predicting Photodynamic Therapy Outcome.","authors":"Erik Mørk, Patricia Mjønes, Olav A Foss, Ingeborg M Bachmann, Eidi Christensen","doi":"10.1369/00221554231161396","DOIUrl":"10.1369/00221554231161396","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is an effective and cosmetically beneficial treatment of low-risk basal cell carcinomas (BCCs). To optimize PDT response, it is important to correctly select tumors. We sought to find markers that could identify such tumors beyond contributions from clinical and histological examination. Studies have shown that β-catenin, E-cadherin, and α-smooth muscle actin (SMA) expression can indicate BCC aggressiveness/BCC invasiveness. We wanted to use these markers in an explorative study to investigate whether they were differently expressed among non-recurring compared with recurring BCCs, to evaluate their ability of predicting PDT outcome. Fifty-two BCCs were stained with antibodies against β-catenin, E-cadherin, and α-SMA, and evaluated using immunoreactive score (IRS), subcellular localization, and stromal protein expression. Results showed that IRS of E-cadherin was significantly different among recurring compared with non-recurring BCCs and with area under a receiver operating characteristic curve of 0.71 (95% confidence interval: 0.56-0.86, <i>p</i>=0.025). Stromal β-catenin expression significantly increased among recurring BCCs. Some recurring BCCs had intense expression in the deep invading tumor edge. In conclusion, E-cadherin, and stromal and deep edge β-catenin expression were most prominent in BCCs that recurred post-PDT, suggesting they could potentially predict PDT outcome. Further studies are needed to investigate whether these results are of clinical value.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 3","pages":"111-120"},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9663169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01Epub Date: 2023-03-24DOI: 10.1369/00221554231161693
Jun Jiang, Raymond Moore, Clarissa E Jordan, Ruifeng Guo, Rachel L Maus, Hongfang Liu, Ellen Goode, Svetomir N Markovic, Chen Wang
Multiplex immunofluorescence (MxIF) images provide detailed information of cell composition and spatial context for biomedical research. However, compromised data quality could lead to research biases. Comprehensive image quality checking (QC) is essential for reliable downstream analysis. As a reliable and specific staining of cell nuclei, 4',6-diamidino-2-phenylindole (DAPI) signals were used as references for tissue localization and auto-focusing across MxIF staining-scanning-bleaching iterations and could potentially be reused for QC. To confirm the feasibility of using DAPI as QC reference, pixel-level DAPI values were extracted to calculate signal fluctuations and tissue content similarities in staining-scanning-bleaching iterations for identifying quality issues. Concordance between automatic quantification and human experts' annotations were evaluated on a data set consisting of 348 fields of view (FOVs) with 45 immune and tumor cell markers. Cell distribution differences between subsets of QC-pass vs QC-failed FOVs were compared to investigate the downstream effects. Results showed that 87.3% FOVs with tissue damage and 73.4% of artifacts were identified. QC-failed FOVs showed elevated regional gathering in cellular feature space compared with the QC-pass FOVs. Our results supported that DAPI signals could be used as references for MxIF image QC, and low-quality FOVs identified by our method must be cautiously considered for downstream analyses.
{"title":"Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel-referenced Evaluation.","authors":"Jun Jiang, Raymond Moore, Clarissa E Jordan, Ruifeng Guo, Rachel L Maus, Hongfang Liu, Ellen Goode, Svetomir N Markovic, Chen Wang","doi":"10.1369/00221554231161693","DOIUrl":"10.1369/00221554231161693","url":null,"abstract":"<p><p>Multiplex immunofluorescence (MxIF) images provide detailed information of cell composition and spatial context for biomedical research. However, compromised data quality could lead to research biases. Comprehensive image quality checking (QC) is essential for reliable downstream analysis. As a reliable and specific staining of cell nuclei, 4',6-diamidino-2-phenylindole (DAPI) signals were used as references for tissue localization and auto-focusing across MxIF staining-scanning-bleaching iterations and could potentially be reused for QC. To confirm the feasibility of using DAPI as QC reference, pixel-level DAPI values were extracted to calculate signal fluctuations and tissue content similarities in staining-scanning-bleaching iterations for identifying quality issues. Concordance between automatic quantification and human experts' annotations were evaluated on a data set consisting of 348 fields of view (FOVs) with 45 immune and tumor cell markers. Cell distribution differences between subsets of QC-pass vs QC-failed FOVs were compared to investigate the downstream effects. Results showed that 87.3% FOVs with tissue damage and 73.4% of artifacts were identified. QC-failed FOVs showed elevated regional gathering in cellular feature space compared with the QC-pass FOVs. Our results supported that DAPI signals could be used as references for MxIF image QC, and low-quality FOVs identified by our method must be cautiously considered for downstream analyses.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 3","pages":"121-130"},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9660061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giant cell tumors of bone (GCTBs) are locally aggressive tumors with the histological features of giant cells and stromal cells. Denosumab is a human monoclonal antibody that binds to the cytokine receptor activator of nuclear factor-kappa B ligand (RANKL). RANKL inhibition blocks tumor-induced osteoclastogenesis, and survival, and is used to treat unresectable GCTBs. Denosumab treatment induces osteogenic differentiation of GCTB cells. In this study, the expression of RANKL, special AT-rich sequence-binding protein 2 (SATB2, a marker of osteoblast differentiation), and sclerostin/SOST (a marker of mature osteocytes) was analyzed before and after treatment with denosumab in six cases of GCTB. Denosumab therapy was administered a mean of five times over a mean 93.5-day period. Before denosumab treatment, RANKL expression was observed in one of six cases. After denosumab therapy, spindle-like cells devoid of giant cell aggregation were RANKL-positive in four of six cases. Bone matrix-embedded osteocyte markers were observed, although RANKL was not expressed. Osteocyte-like cells were confirmed to have mutations, as identified using mutation-specific antibodies. Our study results suggest that treatment of GCTBs with denosumab results in osteoblast-osteocyte differentiation. Denosumab played a role in the suppression of tumor activity via inhibition of the RANK-RANKL pathway, which triggers osteoclast precursors to differentiate into osteoclasts.
{"title":"Inhibition of RANKL Expression in Osteocyte-like Differentiated Tumor Cells in Giant Cell Tumor of Bone After Denosumab Treatment.","authors":"Takashi Noguchi, Akio Sakamoto, Yoshiki Murotani, Koichi Murata, Masahiro Hirata, Yosuke Yamada, Junya Toguchida, Shuichi Matsuda","doi":"10.1369/00221554231163638","DOIUrl":"10.1369/00221554231163638","url":null,"abstract":"<p><p>Giant cell tumors of bone (GCTBs) are locally aggressive tumors with the histological features of giant cells and stromal cells. Denosumab is a human monoclonal antibody that binds to the cytokine receptor activator of nuclear factor-kappa B ligand (RANKL). RANKL inhibition blocks tumor-induced osteoclastogenesis, and survival, and is used to treat unresectable GCTBs. Denosumab treatment induces osteogenic differentiation of GCTB cells. In this study, the expression of RANKL, special AT-rich sequence-binding protein 2 (SATB2, a marker of osteoblast differentiation), and sclerostin/SOST (a marker of mature osteocytes) was analyzed before and after treatment with denosumab in six cases of GCTB. Denosumab therapy was administered a mean of five times over a mean 93.5-day period. Before denosumab treatment, RANKL expression was observed in one of six cases. After denosumab therapy, spindle-like cells devoid of giant cell aggregation were RANKL-positive in four of six cases. Bone matrix-embedded osteocyte markers were observed, although RANKL was not expressed. Osteocyte-like cells were confirmed to have mutations, as identified using mutation-specific antibodies. Our study results suggest that treatment of GCTBs with denosumab results in osteoblast-osteocyte differentiation. Denosumab played a role in the suppression of tumor activity via inhibition of the RANK-RANKL pathway, which triggers osteoclast precursors to differentiate into osteoclasts.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 3","pages":"131-138"},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10032743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01Epub Date: 2023-03-02DOI: 10.1369/00221554231158428
Kimberly L Fiock, Ryan K Betters, Marco M Hefti
Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.
Tau磷酸化、聚集和毒性是多种tau病(包括阿尔茨海默病(AD)和伴有tau的额颞叶变性)中神经退行性变的主要驱动因素。虽然聚集和淀粉样蛋白的形成通常被认为是同义词,但不同疾病中的tau聚集体在体内形成淀粉样蛋白的能力尚未得到系统的研究。我们使用淀粉样染料硫黄素 S 观察了混合型 tau 病(如 AD 和原发性年龄相关 tau 病)以及纯 3R 或 4R tau 病(如 Pick 病、进行性核上性麻痹和皮质基底变性)中的 tau 聚集。我们发现,只有在混合型(3R/4R)而非纯粹型(3R或4R)tau病中,tau蛋白的聚集体才会形成硫黄素阳性的淀粉样蛋白。有趣的是,在纯tau病中,星形胶质细胞和神经元tau病理学均不呈硫黄素阳性。由于目前大多数正电子发射断层扫描示踪剂都以硫黄素衍生物为基础,这表明这些示踪剂对鉴别诊断可能比鉴别一般的tau病更有用。我们的研究结果还表明,硫黄素染色法可替代传统的抗体染色法,用于区分多种病变患者的tau聚集体,而且不同tau病的tau毒性机制可能不同。
{"title":"Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies.","authors":"Kimberly L Fiock, Ryan K Betters, Marco M Hefti","doi":"10.1369/00221554231158428","DOIUrl":"10.1369/00221554231158428","url":null,"abstract":"<p><p>Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 2","pages":"73-86"},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9287448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01Epub Date: 2023-03-04DOI: 10.1369/00221554231159451
Joon-Yong Chung, Kyungeun Kim, Kris Ylaya, Katharine E Walker-Bawa, Candice Perry, Robert A Star, Stephen M Hewitt
Neutral buffered formalin (NBF) is the most common fixative in clinical applications. However, NBF damages proteins and nucleic acids, limiting the quality of proteomic and nucleic acid-based assays. Prior studies have demonstrated that BE70, a fixative of buffered 70% ethanol, has many benefits over NBF but the degradation of proteins and nucleic acids in archival paraffin blocks remain a challenge. Thus, we evaluated the addition of guanidinium salts to BE70 with the hypothesis that this may protect RNA and protein. Guanidinium salt supplemented BE70 (BE70G)-fixed tissue is comparable with that of BE70 via histology and immunohistochemistry. Western blot analysis also revealed that HSP70, AKT, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression signals in BE70G-fixed tissue were higher than those in BE70-fixed tissue. The quality of nucleic acids extracted from BE70G-fixed, paraffin-embedded tissue was also superior, and BE70G provides improved protein and RNA quality at shorter fixation times than its predecessors. The degradation of proteins, AKT and GAPDH, in archival tissue blocks is also decreased with the addition of guanidinium salt to BE70. In conclusion, BE70G fixative improves the quality of molecular analysis with more rapid fixation of tissue and enhanced long-term storage of paraffin blocks at room temperature for evaluation of protein epitopes.
{"title":"The Application of Guanidinium to Improve Biomolecule Quality in Fixed, Paraffin-embedded Tissue.","authors":"Joon-Yong Chung, Kyungeun Kim, Kris Ylaya, Katharine E Walker-Bawa, Candice Perry, Robert A Star, Stephen M Hewitt","doi":"10.1369/00221554231159451","DOIUrl":"10.1369/00221554231159451","url":null,"abstract":"<p><p>Neutral buffered formalin (NBF) is the most common fixative in clinical applications. However, NBF damages proteins and nucleic acids, limiting the quality of proteomic and nucleic acid-based assays. Prior studies have demonstrated that BE70, a fixative of buffered 70% ethanol, has many benefits over NBF but the degradation of proteins and nucleic acids in archival paraffin blocks remain a challenge. Thus, we evaluated the addition of guanidinium salts to BE70 with the hypothesis that this may protect RNA and protein. Guanidinium salt supplemented BE70 (BE70G)-fixed tissue is comparable with that of BE70 via histology and immunohistochemistry. Western blot analysis also revealed that HSP70, AKT, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression signals in BE70G-fixed tissue were higher than those in BE70-fixed tissue. The quality of nucleic acids extracted from BE70G-fixed, paraffin-embedded tissue was also superior, and BE70G provides improved protein and RNA quality at shorter fixation times than its predecessors. The degradation of proteins, AKT and GAPDH, in archival tissue blocks is also decreased with the addition of guanidinium salt to BE70. In conclusion, BE70G fixative improves the quality of molecular analysis with more rapid fixation of tissue and enhanced long-term storage of paraffin blocks at room temperature for evaluation of protein epitopes.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 2","pages":"87-101"},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9293854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01Epub Date: 2023-02-10DOI: 10.1369/00221554221147582
Keishi Makita, Noriyuki Otsuka, Utano Tomaru, Koji Taniguchi, Masanori Kasahara
Pressure ulcers represent a crucial clinical problem, especially in hospitalized patients. Ischemia-reperfusion (I-R) is an important cause of these lesions. Natural killer (NK), invariant NK T (iNKT), and dendritic epidermal T-cells, which express the natural killer group 2, member D (NKG2D) receptor, have been reported to have physiological roles in skin tissue repair and wound healing. However, a role for NKG2D-NKG2D ligand interactions in I-R-induced skin injury has not been determined. Using a murine pressure ulcer model, we demonstrated that I-R-induced ulcers in NKG2D-deficient mice were larger than those in wild-type or T-cell receptor δ knockout mice. Histopathological evaluation revealed that accumulation of macrophages and neutrophils at the peripheral deep dermis and subcutaneous tissue of the ulcers was enhanced in NKG2D-deficient mice. Rae-1 mRNA, which encodes an NKG2D ligand, was induced, and RAE-1 protein was detected immunohistochemically in fibroblasts and inflammatory cells in the dermis after reperfusion. RAE-1 expression was also increased in primary mouse fibroblasts treated with sodium arsenite. These results suggested that NKG2D ligand expression was induced by oxidative stress after I-R injury and support a putative role for this ligand in wound repair. Furthermore, the influx of NKG2D-positive cells at I-R sites may mitigate pressure ulcers via NKG2D-NKG2D ligand interactions.
{"title":"NKG2D Ligand Expression Induced by Oxidative Stress Mitigates Cutaneous Ischemia-Reperfusion Injury.","authors":"Keishi Makita, Noriyuki Otsuka, Utano Tomaru, Koji Taniguchi, Masanori Kasahara","doi":"10.1369/00221554221147582","DOIUrl":"10.1369/00221554221147582","url":null,"abstract":"<p><p>Pressure ulcers represent a crucial clinical problem, especially in hospitalized patients. Ischemia-reperfusion (I-R) is an important cause of these lesions. Natural killer (NK), invariant NK T (iNKT), and dendritic epidermal T-cells, which express the natural killer group 2, member D (NKG2D) receptor, have been reported to have physiological roles in skin tissue repair and wound healing. However, a role for NKG2D-NKG2D ligand interactions in I-R-induced skin injury has not been determined. Using a murine pressure ulcer model, we demonstrated that I-R-induced ulcers in NKG2D-deficient mice were larger than those in wild-type or T-cell receptor δ knockout mice. Histopathological evaluation revealed that accumulation of macrophages and neutrophils at the peripheral deep dermis and subcutaneous tissue of the ulcers was enhanced in NKG2D-deficient mice. <i>Rae-1</i> mRNA, which encodes an NKG2D ligand, was induced, and RAE-1 protein was detected immunohistochemically in fibroblasts and inflammatory cells in the dermis after reperfusion. RAE-1 expression was also increased in primary mouse fibroblasts treated with sodium arsenite. These results suggested that NKG2D ligand expression was induced by oxidative stress after I-R injury and support a putative role for this ligand in wound repair. Furthermore, the influx of NKG2D-positive cells at I-R sites may mitigate pressure ulcers via NKG2D-NKG2D ligand interactions.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 2","pages":"61-72"},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We tried to prevent nonspecific nuclear staining (NS-NS) of picrosirius red (PSR) staining by treating the specimens with one of the heteropoly acids phosphotungstic acid (PTA). We analyzed a total of 35 cases of non-cancerous liver tissue for fibrosis and NS-NS under PSR-alone, phosphomolybdic acid (PMA)-pretreated PSR (PMA + PSR), or PTA-pretreated PSR (PTA + PSR) condition. In addition, we analyzed the photosensitivity of PMA or PTA single stain specimens. PTA + PSR significantly suppressed NS-NS compared with PSR. The color of the specimens did not change into blue by 30 times the exposure to whole slide scanner (WSS) light. The PTA + PSR condition showed the highest correlation with the Ishak score (pathological evaluation of liver fibrosis) compared with other conditions. Furthermore, Sirius Red-positive percentage (SRP%) in PSR was increased in the NS-NS observed cases. SRP% in PMA + PSR was significantly affected by WSS light exposure time. Moreover, the deposition of non-polarized PSR-stained substances (NP-PSR+S) clinging to the collagen fibers potentially explains why SRP% seemed bigger under PSR than PTA + PSR. Our protocol enabled us to analyze the whole slide image of PSR staining by high magnification, which would contribute to the accurate analysis of collagen amount in the tissue sections.
我们尝试用一种杂多酸磷钨酸(PTA)处理标本,以防止在吡咯西里红(PSR)染色时出现非特异性核染色(NS-NS)。我们对35例非癌肝组织进行了纤维化和NS-NS分析,分别在单独使用PSR、磷钼酸(PMA)预处理PSR(PMA + PSR)或PTA预处理PSR(PTA + PSR)的条件下进行。此外,我们还分析了 PMA 或 PTA 单一染色标本的光敏性。与 PSR 相比,PTA + PSR 能明显抑制 NS-NS。在全玻片扫描仪(WSS)光源下曝光 30 倍,标本的颜色不会变蓝。与其他条件相比,PTA + PSR 条件与 Ishak 评分(肝纤维化病理评估)的相关性最高。此外,在 NS-NS 观察病例中,PSR 中的天狼星红阳性百分比(SRP%)有所增加。PMA + PSR 中的 SRP% 受 WSS 光照射时间的显著影响。此外,附着在胶原纤维上的非极化 PSR 染色物质(NP-PSR+S)的沉积可能解释了为什么 PSR 中的 SRP% 比 PTA + PSR 中的更大。我们的方案使我们能够通过高倍放大分析 PSR 染色的整张载玻片图像,这将有助于准确分析组织切片中的胶原蛋白量。
{"title":"Phosphotungstic Acid-treated Picrosirius Red Staining Improves Whole-slide Quantitative Analysis of Collagen in Histological Specimens.","authors":"Yui Mukade, Sayaka Kobayashi, Yoshimi Nishijima, Kiminori Kimura, Akira Watanabe, Hayato Ikota, Ken Shirabe, Hideaki Yokoo, Masanao Saio","doi":"10.1369/00221554221141140","DOIUrl":"10.1369/00221554221141140","url":null,"abstract":"<p><p>We tried to prevent nonspecific nuclear staining (NS-NS) of picrosirius red (PSR) staining by treating the specimens with one of the heteropoly acids phosphotungstic acid (PTA). We analyzed a total of 35 cases of non-cancerous liver tissue for fibrosis and NS-NS under PSR-alone, phosphomolybdic acid (PMA)-pretreated PSR (PMA + PSR), or PTA-pretreated PSR (PTA + PSR) condition. In addition, we analyzed the photosensitivity of PMA or PTA single stain specimens. PTA + PSR significantly suppressed NS-NS compared with PSR. The color of the specimens did not change into blue by 30 times the exposure to whole slide scanner (WSS) light. The PTA + PSR condition showed the highest correlation with the Ishak score (pathological evaluation of liver fibrosis) compared with other conditions. Furthermore, Sirius Red-positive percentage (SRP%) in PSR was increased in the NS-NS observed cases. SRP% in PMA + PSR was significantly affected by WSS light exposure time. Moreover, the deposition of non-polarized PSR-stained substances (NP-PSR<sup>+</sup>S) clinging to the collagen fibers potentially explains why SRP% seemed bigger under PSR than PTA + PSR. Our protocol enabled us to analyze the whole slide image of PSR staining by high magnification, which would contribute to the accurate analysis of collagen amount in the tissue sections.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 1","pages":"11-26"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10713178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-12-21DOI: 10.1369/00221554221146837
Gwen V Childs
{"title":"Commentary on \"Classifications of Anterior Pituitary Cell Types With Immunoenzyme Histochemistry\": Dr. Paul Nakane Blazed the Trail to Modern Technology.","authors":"Gwen V Childs","doi":"10.1369/00221554221146837","DOIUrl":"10.1369/00221554221146837","url":null,"abstract":"","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 1","pages":"27-41"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9858054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-12-21DOI: 10.1369/00221554221146838
Dale R Abrahamson
This commentary briefly reviews the background for the development of the horseradish peroxidase-diaminobenzidine tetrahydrochloride histochemical method originally described by Graham and Karnovsky in their citation classic, reprinted in full in this issue of Journal of Histochemistry & Cytochemistry. Some of the method's subsequent applications, including its use as a macromolecular tracer for kidney glomerular permeability and use in immunoelectron microscopy and other immunoassays, are also discussed.
本评论简要回顾了辣根过氧化物酶-二氨基联苯胺四盐酸盐组织化学方法的发展背景,该方法最初由 Graham 和 Karnovsky 在他们的经典引文中描述,本期《组织化学与细胞化学杂志》全文转载了该引文。此外,还讨论了该方法的一些后续应用,包括用作肾小球通透性的大分子示踪剂,以及在免疫电子显微镜和其他免疫测定中的应用。
{"title":"The Graham and Karnovsky Horseradish Peroxidase Ultrastructural Method: A Premier JHC Citation Classic.","authors":"Dale R Abrahamson","doi":"10.1369/00221554221146838","DOIUrl":"10.1369/00221554221146838","url":null,"abstract":"<p><p>This commentary briefly reviews the background for the development of the horseradish peroxidase-diaminobenzidine tetrahydrochloride histochemical method originally described by Graham and Karnovsky in their citation classic, reprinted in full in this issue of <i>Journal of Histochemistry & Cytochemistry</i>. Some of the method's subsequent applications, including its use as a macromolecular tracer for kidney glomerular permeability and use in immunoelectron microscopy and other immunoassays, are also discussed.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"71 1","pages":"43-45"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10710504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01Epub Date: 2022-12-13DOI: 10.1369/00221554221146213
Bertalan Dudás, Malcolm Lane, Nikitha Mupparaju, Hye Min Kim, Istvan Merchenthaler
Immunocytochemical (ICC) techniques are frequently used in basic and clinical research. Here, we focus on the importance of using antisera/antibodies at optimal dilutions to achieve specificity and reduce costs. Unfortunately, the basic principle, the necessity to test method specificity of the staining by a series of increasing dilutions of primary antiserum/antibodies, is only occasionally seen in papers using ICC. Many researchers rely on the company's information or others' published data. In this study, we show examples with monoclonal antibodies used in the peroxidase-based ICC technique in mouse and guinea pig brain sections. We show images of ICC staining of phospho-S129 alpha-synuclein in A53T mice and NeuN in guinea pig brains and demonstrate that optimal staining with them can be achieved at least at two to three orders of magnitude higher dilutions than generally used in the literature. We strongly recommend that when antisera/antibodies are used for the first time in any laboratory, independent of what the manufacturer or vendor recommends or are found in the literature, a dilution curve should be set up to identify the optimal dilution. This practice provides not only the highest specificity but is also an economic approach.
{"title":"A Forgotten Principle in Immunocytochemistry: Optimal Dilution.","authors":"Bertalan Dudás, Malcolm Lane, Nikitha Mupparaju, Hye Min Kim, Istvan Merchenthaler","doi":"10.1369/00221554221146213","DOIUrl":"10.1369/00221554221146213","url":null,"abstract":"<p><p>Immunocytochemical (ICC) techniques are frequently used in basic and clinical research. Here, we focus on the importance of using antisera/antibodies at optimal dilutions to achieve specificity and reduce costs. Unfortunately, the basic principle, the necessity to test method specificity of the staining by a series of increasing dilutions of primary antiserum/antibodies, is only occasionally seen in papers using ICC. Many researchers rely on the company's information or others' published data. In this study, we show examples with monoclonal antibodies used in the peroxidase-based ICC technique in mouse and guinea pig brain sections. We show images of ICC staining of phospho-S129 alpha-synuclein in A53T mice and NeuN in guinea pig brains and demonstrate that optimal staining with them can be achieved at least at two to three orders of magnitude higher dilutions than generally used in the literature. We strongly recommend that when antisera/antibodies are used for the first time in any laboratory, independent of what the manufacturer or vendor recommends or are found in the literature, a dilution curve should be set up to identify the optimal dilution. This practice provides not only the highest specificity but is also an economic approach.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"70 11-12","pages":"759-765"},"PeriodicalIF":3.2,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10713953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}