Yongjae Lee, Soonkyu Hwang, Woori Kim, Ji Hun Kim, Bernhard O Palsson, Byung-Kwan Cho
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
One-sentence summary: This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
{"title":"CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces.","authors":"Yongjae Lee, Soonkyu Hwang, Woori Kim, Ji Hun Kim, Bernhard O Palsson, Byung-Kwan Cho","doi":"10.1093/jimb/kuae009","DOIUrl":"10.1093/jimb/kuae009","url":null,"abstract":"<p><p>The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.</p><p><strong>One-sentence summary: </strong>This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda Fischer, Vanessa Castagna, Shafraz Omer, Micah Marmorstein, Junqi Wu, Shannon Ceballos, Emma Skoog, Carlito B Lebrilla, Chris Suarez, Aletta Schnitzler
The yeast Komagataella phaffii has become a popular host strain among biotechnology start-up companies for producing recombinant proteins for food and adult nutrition applications. Komagataella phaffii is a host of choice due to its long history of safe use, open access to protocols and strains, a secretome free of host proteins and proteases, and contract manufacturing organizations with deep knowledge in bioprocess scale-up. However, a recent publication highlighted the abundance of an unknown polysaccharide that accumulates in the supernatant during fermentation. This poses a significant challenge in using K. phaffii as a production host. This polysaccharide leads to difficulties in achieving high purity products and requires specialized and costly downstream processing steps for removal. In this study, we describe the use of the common K. phaffii host strain YB-4290 for production of the bioactive milk protein lactoferrin. Upon purification of lactoferrin using membrane-based separation methods, significant amounts of carbohydrate were copurified with the protein. It was determined that the carbohydrate is mostly composed of mannose residues with minor amounts of glucose and glucosamine. The polysaccharide fraction has an average molecular weight of 50 kDa and consists mainly of mannan, galactomannan, and amylose. In addition, a large fraction of the carbohydrate has an unknown structure likely composed of oligosaccharides. Additional strains were tested in fermentation to further understand the source of the carbohydrates. The commonly used industrial hosts, BG10 and YB-4290, produce a basal level of exopolysaccharide; YB-4290 producing slightly more than BG10. Overexpression of recombinant protein stimulates exopolysaccharide production well above levels produced by the host strains alone. Overall, this study aims to provide a foundation for developing methods to improve the economics of recombinant protein production using K. phaffii as a production host.
One-sentence summary: Overexpression of recombinant protein stimulates the hyperproduction of high-molecular-weight, mannose-based, exopolysaccharides by the industrial yeast Komagataella phaffii.
Komagataella phaffii酵母已成为生物技术初创公司生产用于食品和成人营养品的重组蛋白质的常用宿主菌株。K. phaffii之所以成为首选宿主,是因为它具有安全使用的悠久历史、开放的方案和菌株、不含宿主蛋白和蛋白酶的分泌组,以及在生物工艺放大方面具有深厚知识的合同生产组织。然而,最近发表的一篇文章强调,发酵过程中会在上清液中积累大量未知多糖。这给使用 K. phaffii 作为生产宿主带来了巨大挑战。这种多糖导致难以获得高纯度的产品,需要专门且成本高昂的下游处理步骤来去除。在本研究中,我们介绍了利用常见的 K. phaffii 宿主菌株 YB-4290 生产生物活性牛奶蛋白乳铁蛋白的情况。使用膜分离方法纯化乳铁蛋白后,发现大量碳水化合物与蛋白质共同纯化。经测定,碳水化合物主要由甘露糖残基组成,还有少量葡萄糖和氨基葡萄糖。多糖部分的平均分子量为 50 kDa,主要由甘露聚糖、半乳甘露聚糖和直链淀粉组成。此外,还有一大部分碳水化合物结构不明,可能由低聚糖组成。为了进一步了解碳水化合物的来源,还对其他菌株进行了发酵测试。常用的工业宿主 BG10 和 YB-4290 产生基本水平的外多糖;YB-4290 产生的外多糖略高于 BG10。过量表达重组蛋白可刺激外多糖的产生,使其远远高于宿主菌株单独产生的水平。总之,本研究旨在为开发方法奠定基础,以提高利用 K. phaffii 作为生产宿主生产重组蛋白的经济效益。
{"title":"Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii.","authors":"Amanda Fischer, Vanessa Castagna, Shafraz Omer, Micah Marmorstein, Junqi Wu, Shannon Ceballos, Emma Skoog, Carlito B Lebrilla, Chris Suarez, Aletta Schnitzler","doi":"10.1093/jimb/kuae046","DOIUrl":"10.1093/jimb/kuae046","url":null,"abstract":"<p><p>The yeast Komagataella phaffii has become a popular host strain among biotechnology start-up companies for producing recombinant proteins for food and adult nutrition applications. Komagataella phaffii is a host of choice due to its long history of safe use, open access to protocols and strains, a secretome free of host proteins and proteases, and contract manufacturing organizations with deep knowledge in bioprocess scale-up. However, a recent publication highlighted the abundance of an unknown polysaccharide that accumulates in the supernatant during fermentation. This poses a significant challenge in using K. phaffii as a production host. This polysaccharide leads to difficulties in achieving high purity products and requires specialized and costly downstream processing steps for removal. In this study, we describe the use of the common K. phaffii host strain YB-4290 for production of the bioactive milk protein lactoferrin. Upon purification of lactoferrin using membrane-based separation methods, significant amounts of carbohydrate were copurified with the protein. It was determined that the carbohydrate is mostly composed of mannose residues with minor amounts of glucose and glucosamine. The polysaccharide fraction has an average molecular weight of 50 kDa and consists mainly of mannan, galactomannan, and amylose. In addition, a large fraction of the carbohydrate has an unknown structure likely composed of oligosaccharides. Additional strains were tested in fermentation to further understand the source of the carbohydrates. The commonly used industrial hosts, BG10 and YB-4290, produce a basal level of exopolysaccharide; YB-4290 producing slightly more than BG10. Overexpression of recombinant protein stimulates exopolysaccharide production well above levels produced by the host strains alone. Overall, this study aims to provide a foundation for developing methods to improve the economics of recombinant protein production using K. phaffii as a production host.</p><p><strong>One-sentence summary: </strong>Overexpression of recombinant protein stimulates the hyperproduction of high-molecular-weight, mannose-based, exopolysaccharides by the industrial yeast Komagataella phaffii.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeanette C Velasquez-Guzman, Herbert M Huttanus, Demosthenes P Morales, Tara S Werner, Austin L Carroll, Adam M Guss, Chris M Yeager, Taraka Dale, Ramesh K Jha
Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism.
One-sentence summary: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and β-ketoadipate pathways.
{"title":"Biosensors for the detection of chorismate and cis,cis-muconic acid in Corynebacterium glutamicum.","authors":"Jeanette C Velasquez-Guzman, Herbert M Huttanus, Demosthenes P Morales, Tara S Werner, Austin L Carroll, Adam M Guss, Chris M Yeager, Taraka Dale, Ramesh K Jha","doi":"10.1093/jimb/kuae024","DOIUrl":"10.1093/jimb/kuae024","url":null,"abstract":"<p><p>Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism.</p><p><strong>One-sentence summary: </strong>High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and β-ketoadipate pathways.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges.
One-sentence summary: This is a review of literature related to applying Design of Experiments for genetic optimization.
实验设计(DoE)是一个术语,用于描述应用统计方法来分析多个变量对多元系统性能的影响。它通常用于化学工程和材料科学等领域的工艺优化。最近,定量控制生物系统中基因表达的能力取得了进展,这为将 DoE 应用于基因优化提供了可能。在这篇以基因和代谢工程师为对象的综述中,我们从高层次介绍了 DoE 的几种方法,并描述了将这些方法应用于分析或优化工程基因系统的实例。我们讨论了应用 DoE 所面临的挑战,并提出了缓解这些挑战的策略。
{"title":"Using design of experiments to guide genetic optimization of engineered metabolic pathways.","authors":"Seonyun Moon, Anna Saboe, Michael J Smanski","doi":"10.1093/jimb/kuae010","DOIUrl":"10.1093/jimb/kuae010","url":null,"abstract":"<p><p>Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges.</p><p><strong>One-sentence summary: </strong>This is a review of literature related to applying Design of Experiments for genetic optimization.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Vegan grade medium component screening and concentration optimization for the fermentation of the probiotic strain Lactobacillus paracasei IMC 502® using Design of Experiments.","authors":"","doi":"10.1093/jimb/kuae043","DOIUrl":"10.1093/jimb/kuae043","url":null,"abstract":"","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"51 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted.
One-sentence summary: This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.
{"title":"Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass.","authors":"Xuejiao Lyu, Mujaheed Nuhu, Pieter Candry, Jenna Wolfanger, Michael Betenbaugh, Alexis Saldivar, Cristal Zuniga, Ying Wang, Shilva Shrestha","doi":"10.1093/jimb/kuae025","DOIUrl":"10.1093/jimb/kuae025","url":null,"abstract":"<p><p>Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted.</p><p><strong>One-sentence summary: </strong>This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas L Fluegel, Ming-Rong Deng, Ping Su, Edward Kalkreuter, Dong Yang, Jeffrey D Rudolf, Liao-Bin Dong, Ben Shen
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery.
One-sentence summary: Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
{"title":"Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization.","authors":"Lucas L Fluegel, Ming-Rong Deng, Ping Su, Edward Kalkreuter, Dong Yang, Jeffrey D Rudolf, Liao-Bin Dong, Ben Shen","doi":"10.1093/jimb/kuae003","DOIUrl":"10.1093/jimb/kuae003","url":null,"abstract":"<p><p>The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery.</p><p><strong>One-sentence summary: </strong>Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong H Kim, Hyun G Hwang, Dae-Yeol Ye, Gyoo Y Jung
As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate.
One-sentence summary: In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.
{"title":"Transcriptional and translational flux optimization at the key regulatory node for enhanced production of naringenin using acetate in engineered Escherichia coli.","authors":"Dong H Kim, Hyun G Hwang, Dae-Yeol Ye, Gyoo Y Jung","doi":"10.1093/jimb/kuae006","DOIUrl":"10.1093/jimb/kuae006","url":null,"abstract":"<p><p>As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate.</p><p><strong>One-sentence summary: </strong>In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products.
One-sentence summary: Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.
{"title":"Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.","authors":"Hansen Tjo, Jonathan M Conway","doi":"10.1093/jimb/kuae020","DOIUrl":"10.1093/jimb/kuae020","url":null,"abstract":"<p><p>Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products.</p><p><strong>One-sentence summary: </strong>Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Ingham, Rehana Sung, Phil Kay, Katherine Hollywood, Phavit Wongsirichot, Alistair Veitch, James Winterburn
To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another. In this work, 75 fermentation broths with varying product/substrate concentrations were comprehensively tested with the 3 techniques and compared. HPLC-ultraviolet detection (198 nm) was capable of quantifying C18:1 subterminal hydroxyl diacetylated lactonic sophorolipid down to a lower limit of 0.3 g/L with low variability (<3.21%). Gravimetric quantification of the broths following liquid:liquid extraction with hexane and ethyl acetate showed some linearity (R2 = .658) when compared to HPLC but could not quantify lower than 11.06 g/L, even when no sophorolipids were detected in the sample, highlighting the non-specificity of the method to co-extract non-sophorolipid components in the final gravimetric measure. The anthrone assay showed no linearity (R2 = .129) and was found to cross-react with media components (rapeseed oil, corn steep liquor, glucose), leading to consistent overestimation of sophorolipid concentration. The appearance of poor biomass separation during sample preparation with centrifugation was noted and resolved with a novel sample preparation method with pure ethanol. Extensive analysis and comparisons of the most common sophorolipid quantification techniques are explored and the limitations/advantages are highlighted. The findings provide a guide for scientists to make an informed decision on the suitable quantification tool that meets their needs, exploring all aspects of the analysis process from harvest, sample preparation, and analysis.
{"title":"Determining the accuracy and suitability of common analytical techniques for sophorolipid biosurfactants.","authors":"Benjamin Ingham, Rehana Sung, Phil Kay, Katherine Hollywood, Phavit Wongsirichot, Alistair Veitch, James Winterburn","doi":"10.1093/jimb/kuae021","DOIUrl":"10.1093/jimb/kuae021","url":null,"abstract":"<p><p>To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another. In this work, 75 fermentation broths with varying product/substrate concentrations were comprehensively tested with the 3 techniques and compared. HPLC-ultraviolet detection (198 nm) was capable of quantifying C18:1 subterminal hydroxyl diacetylated lactonic sophorolipid down to a lower limit of 0.3 g/L with low variability (<3.21%). Gravimetric quantification of the broths following liquid:liquid extraction with hexane and ethyl acetate showed some linearity (R2 = .658) when compared to HPLC but could not quantify lower than 11.06 g/L, even when no sophorolipids were detected in the sample, highlighting the non-specificity of the method to co-extract non-sophorolipid components in the final gravimetric measure. The anthrone assay showed no linearity (R2 = .129) and was found to cross-react with media components (rapeseed oil, corn steep liquor, glucose), leading to consistent overestimation of sophorolipid concentration. The appearance of poor biomass separation during sample preparation with centrifugation was noted and resolved with a novel sample preparation method with pure ethanol. Extensive analysis and comparisons of the most common sophorolipid quantification techniques are explored and the limitations/advantages are highlighted. The findings provide a guide for scientists to make an informed decision on the suitable quantification tool that meets their needs, exploring all aspects of the analysis process from harvest, sample preparation, and analysis.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}