首页 > 最新文献

Journal of Industrial Microbiology & Biotechnology最新文献

英文 中文
Optimizing the strain engineering process for industrial-scale production of bio-based molecules. 优化菌株工程工艺,实现生物基分子的工业规模生产。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad025
Eric Abbate, Jennifer Andrion, Amanda Apel, Matthew Biggs, Julie Chaves, Kristi Cheung, Anthony Ciesla, Alia Clark-ElSayed, Michael Clay, Riarose Contridas, Richard Fox, Glenn Hein, Dan Held, Andrew Horwitz, Stefan Jenkins, Karolina Kalbarczyk, Nandini Krishnamurthy, Mona Mirsiaghi, Katherine Noon, Mike Rowe, Tyson Shepherd, Katia Tarasava, Theodore M Tarasow, Drew Thacker, Gladys Villa, Krishna Yerramsetty

Biomanufacturing could contribute as much as ${$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.

到2030年,生物制造业可为全球经济贡献多达30万亿美元。然而,不断增长的生物经济的成功取决于我们以时间和成本效益高的方式生产高性能菌株的能力。设计-建造-测试-学习(DBTL)框架已被证明是一种有效的应变工程方法。在过去的几十年里,在基因组工程、基因分型和表型处理方面取得了显著的进步,极大地加速了DBTL周期。然而,为了彻底减少应变开发时间和成本,我们需要从优化整个周期的角度来看待应变工程过程,而不是简单地增加每个阶段的产量。我们提出了一种方法,该方法集成了DBTL循环的所有4个阶段,并利用了计算设计、高通量基因组工程和表型分析方法的进步,以及用于预测菌株放大性能的机器学习工具。从这个角度来看,我们讨论了工业菌株工程的挑战,概述了克服这些挑战的最佳方法,并展示了成功的菌株工程项目的例子,这些项目用于生产异源蛋白质、氨基酸和小分子,以及提高工业菌株的耐受性、适应性和降低扩大规模的风险。
{"title":"Optimizing the strain engineering process for industrial-scale production of bio-based molecules.","authors":"Eric Abbate,&nbsp;Jennifer Andrion,&nbsp;Amanda Apel,&nbsp;Matthew Biggs,&nbsp;Julie Chaves,&nbsp;Kristi Cheung,&nbsp;Anthony Ciesla,&nbsp;Alia Clark-ElSayed,&nbsp;Michael Clay,&nbsp;Riarose Contridas,&nbsp;Richard Fox,&nbsp;Glenn Hein,&nbsp;Dan Held,&nbsp;Andrew Horwitz,&nbsp;Stefan Jenkins,&nbsp;Karolina Kalbarczyk,&nbsp;Nandini Krishnamurthy,&nbsp;Mona Mirsiaghi,&nbsp;Katherine Noon,&nbsp;Mike Rowe,&nbsp;Tyson Shepherd,&nbsp;Katia Tarasava,&nbsp;Theodore M Tarasow,&nbsp;Drew Thacker,&nbsp;Gladys Villa,&nbsp;Krishna Yerramsetty","doi":"10.1093/jimb/kuad025","DOIUrl":"10.1093/jimb/kuad025","url":null,"abstract":"<p><p>Biomanufacturing could contribute as much as ${$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10128135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved 13C metabolic flux analysis in Escherichia coli metabolism: application of a high-resolution MS (GC-EI-QTOF) for comprehensive assessment of MS/MS fragments. 改进的大肠杆菌代谢13C代谢通量分析:应用高分辨率质谱(GC-EI-QTOF)对MS/MS片段进行综合评估。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad039
Chris Richter, Eva Grafahrend-Belau, Jörg Ziegler, Manish L Raorane, Björn H Junker

Gas chromatography-tandem mass spectrometry with electron ionization (GC-EI-MS/MS) provides rich information on stable-isotope labeling for 13C-metabolic flux analysis (13C-MFA). To pave the way for the routine application of tandem MS data for metabolic flux quantification, we aimed to compile a comprehensive library of GC-EI-MS/MS fragments of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids. First, we established an analytical workflow that combines high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments. Application of the high-mass accuracy MS procedure resulted into the identification of 129 validated precursor-product ion pairs of 13 amino acids with 30 fragments being accepted for 13C-MFA. The practical benefit of the novel tandem MS data was demonstrated by a proof-of-concept study, which confirmed the importance of the compiled library for high-resolution 13C-MFA.

One sentence summary: An analytical workflow that combines high-resolution mass spectrometry (MS) and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments, which provide positional information and therefore offering significant advantages over traditional MS to improve 13C-metabolic flux analysis.

气相色谱-电子电离串联质谱(GC-EI-MS/MS)为13c代谢通量分析(13C-MFA)的稳定同位素标记提供了丰富的信息。为了为串联质谱数据在代谢通量定量中的常规应用铺平道路,我们旨在建立一个全面的叔丁基二甲基硅基(TBDMS)衍生蛋白氨基酸的GC-EI-MS/MS片段文库。首先,我们建立了一个结合高分辨率气相色谱-四极杆飞行时间质谱(GC-EI-QTOFMS)和全13c标记生物量的分析工作流程,以鉴定和结构阐明串联质谱氨基酸片段。应用高质量精度的质谱方法鉴定了13个氨基酸的129个有效的前体产物离子对,其中30个片段被接受为13C-MFA。一项概念验证研究证明了新型串联质谱数据的实际效益,该研究证实了编译库对高分辨率13C-MFA的重要性。
{"title":"Improved 13C metabolic flux analysis in Escherichia coli metabolism: application of a high-resolution MS (GC-EI-QTOF) for comprehensive assessment of MS/MS fragments.","authors":"Chris Richter, Eva Grafahrend-Belau, Jörg Ziegler, Manish L Raorane, Björn H Junker","doi":"10.1093/jimb/kuad039","DOIUrl":"10.1093/jimb/kuad039","url":null,"abstract":"<p><p>Gas chromatography-tandem mass spectrometry with electron ionization (GC-EI-MS/MS) provides rich information on stable-isotope labeling for 13C-metabolic flux analysis (13C-MFA). To pave the way for the routine application of tandem MS data for metabolic flux quantification, we aimed to compile a comprehensive library of GC-EI-MS/MS fragments of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids. First, we established an analytical workflow that combines high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments. Application of the high-mass accuracy MS procedure resulted into the identification of 129 validated precursor-product ion pairs of 13 amino acids with 30 fragments being accepted for 13C-MFA. The practical benefit of the novel tandem MS data was demonstrated by a proof-of-concept study, which confirmed the importance of the compiled library for high-resolution 13C-MFA.</p><p><strong>One sentence summary: </strong>An analytical workflow that combines high-resolution mass spectrometry (MS) and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments, which provide positional information and therefore offering significant advantages over traditional MS to improve 13C-metabolic flux analysis.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92154743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. 天然产物衍生物作为潜在环境消毒剂的抗真菌活性及其作用机制。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad036
Norma Patricia Silva-Beltrán, Stephanie A Boon, M Khalid Ijaz, Julie McKinney, Charles P Gerba

There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants.

One-sentence summary: This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.

已经有相当多的抗真菌研究评估了天然产物,如药用植物及其次生代谢物(酚类化合物、生物碱)、精油以及蜂胶提取物。这些研究调查了天然抗真菌物质作为食品防腐剂、药物制剂或农业中的绿色农药,因为它们代表了一种安全、低影响和环境友好的抗真菌化合物的选择,然而,很少研究这些天然产品作为室内空气或环境表面消毒/卫生的替代品。本文综述了近年来天然产物在不同环境下作为潜在真菌消毒剂的研究,以及天然产物对真菌灭活的机制。探索的机制表明,这些天然产物可以干扰ATP合成和Ca++、K+离子流动,主要分别破坏真菌的细胞膜和细胞壁,另一个机制是ROS作用,破坏线粒体和细胞膜。抑制外排泵的过度表达是另一种涉及真菌蛋白损伤的机制。许多天然产品似乎具有作为室内环境消毒剂的潜力。
{"title":"Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants.","authors":"Norma Patricia Silva-Beltrán, Stephanie A Boon, M Khalid Ijaz, Julie McKinney, Charles P Gerba","doi":"10.1093/jimb/kuad036","DOIUrl":"10.1093/jimb/kuad036","url":null,"abstract":"<p><p>There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants.</p><p><strong>One-sentence summary: </strong>This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytochromes P450 involved in bacterial RiPP biosyntheses. 细胞色素P450参与细菌RiPP生物合成。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad005
Sylvia Kunakom, Hiroshi Otani, Daniel W Udwary, Drew T Doering, Nigel J Mouncey

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered.

Summary: The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.

核糖体合成和翻译后修饰肽(RiPPs)是一类大型次级代谢产物,由于其复杂的支架在医学、农业和化学生态学中具有潜在的作用而引起了科学界的关注。RiPPs来源于核糖体合成蛋白质的切割和其他修饰,由各种酶催化改变肽主链或侧链。在这些酶中,细胞色素P450 (P450)是血红素硫酸酯蛋白的一个超家族,参与许多代谢途径,包括RiPP生物合成。在这篇综述中,我们重点讨论了P450参与RiPP途径及其介导的独特化学转化。先前的研究已经揭示了p450的丰富分布在生命的各个领域。虽然参与RiPP生物合成的表征p450的数量相对较少,但它们催化了各种酶促反应,如C-C或C-N键的形成。一些ripp的形成是由一个以上的P450催化的,从而实现了结构的多样性。随着RiPP预测生物信息学工具的不断完善和合成生物学技术的不断进步,有望发现更多细胞色素p450介导的RiPP生物合成途径。摘要:在核糖体合成和翻译后修饰肽的基因簇中编码p450的基因的存在扩大了这些次级代谢物的结构和功能多样性,在这里,我们回顾了这方面知识的现状。
{"title":"Cytochromes P450 involved in bacterial RiPP biosyntheses.","authors":"Sylvia Kunakom,&nbsp;Hiroshi Otani,&nbsp;Daniel W Udwary,&nbsp;Drew T Doering,&nbsp;Nigel J Mouncey","doi":"10.1093/jimb/kuad005","DOIUrl":"https://doi.org/10.1093/jimb/kuad005","url":null,"abstract":"<p><p>Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered.</p><p><strong>Summary: </strong>The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/fa/kuad005.PMC10124130.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9954485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Correction to: Fungi as a commercial source of eumelanin: current understanding & prospects. 更正:真菌作为真黑色素的商业来源:目前的理解和前景。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad032
{"title":"Correction to: Fungi as a commercial source of eumelanin: current understanding & prospects.","authors":"","doi":"10.1093/jimb/kuad032","DOIUrl":"10.1093/jimb/kuad032","url":null,"abstract":"","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/a3/kuad032.PMC10569374.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory. 在学术实验室组建微生物天然产物和预分馏提取物库的经验教训。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad042
Michael A Cook, Daniel Pallant, Linda Ejim, Arlene D Sutherland, Xiaodong Wang, Jarrod W Johnson, Susan McCusker, Xuefei Chen, Maya George, Sommer Chou, Kalinka Koteva, Wenliang Wang, Christian Hobson, Dirk Hackenberger, Nicholas Waglechner, Obi Ejim, Tracey Campbell, Ricardo Medina, Lesley T MacNeil, Gerard D Wright

Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds.

One-sentence summary: Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.

微生物天然产物是一种特殊的代谢产物,是许多生物活性化合物的来源,包括抗生素、抗真菌剂、抗寄生虫剂、抗癌剂和生物学探针。组建天然产物生产者文库历来是制药业的工作。制药业已经收集了大量历史悠久的细菌和真菌,以确定新的药物线索,并取得了卓越的成果--60% 以上的药物支架都来自于此类文库。尽管取得了这一成功,但已知化合物的反复重新发现以及由此导致的化学新颖性的不断降低,促使制药业从这一生物活性化合物来源转向更容易合成的化合物。先进质谱工具的出现,加上快速的全基因组测序以及对编码合成特殊代谢物所需机器的生物合成基因簇的默观鉴定,为重新审视微生物天然产物库提供了新的契机。组建一个合适的微生物和提取物库进行筛选需要投入资源和开发方法,而这些通常是大型制药公司的专利。在此,我们从一个角度报告了我们在组建天然产物生产微生物库方面所做的努力,以及利用大多数学术实验室可用的资源建立提取和分馏生物活性化合物的方法。我们通过一系列抗菌剂和细胞毒剂的筛选验证了文库和方法。这项工作为建立微生物天然产物生产者库和生物活性提取物分馏库提供了蓝图,适合生物活性化合物的筛选。
{"title":"Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory.","authors":"Michael A Cook, Daniel Pallant, Linda Ejim, Arlene D Sutherland, Xiaodong Wang, Jarrod W Johnson, Susan McCusker, Xuefei Chen, Maya George, Sommer Chou, Kalinka Koteva, Wenliang Wang, Christian Hobson, Dirk Hackenberger, Nicholas Waglechner, Obi Ejim, Tracey Campbell, Ricardo Medina, Lesley T MacNeil, Gerard D Wright","doi":"10.1093/jimb/kuad042","DOIUrl":"10.1093/jimb/kuad042","url":null,"abstract":"<p><p>Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds.</p><p><strong>One-sentence summary: </strong>Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica. 在解脂Yarrowia中,取消储存脂质诱导蛋白质错误折叠和应激反应。
IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad031
Simone Zaghen, Oliver Konzock, Jing Fu, Eduard J Kerkhoven

Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.

Yarrowia lipolytica自然地将多余的碳作为储存脂质保存下来。工程努力使脂质合成所需的高前体通量转向附加值化学物质,如聚酮、类黄酮和萜类化合物。为了将前体流量从储存脂质重定向到其他产物,可以删除四个参与三酰甘油和甾醇酯合成的基因(DGA1、DGA2、LRO1、ARE1)。为了阐明缺失对细胞生理和调节的影响,我们在碳和氮限制下进行恒化器培养,然后进行转录组分析。我们发现,储存的无脂细胞显示出未折叠蛋白质反应的富集,并且与蛋白质重折叠和降解相关的几个生物学过程也得到了富集。此外,在氮限制下,储存的无脂质细胞显示出改变的脂质类别分布,具有丰富的潜在细胞毒性游离脂肪酸。我们的发现不仅突出了脂质代谢对细胞生理和蛋白稳定的重要性,而且有助于开发用于商品化学品生产的改良的溶脂Y。
{"title":"Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica.","authors":"Simone Zaghen, Oliver Konzock, Jing Fu, Eduard J Kerkhoven","doi":"10.1093/jimb/kuad031","DOIUrl":"10.1093/jimb/kuad031","url":null,"abstract":"<p><p>Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41138947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring biofilm growth and dispersal in real-time with impedance biosensors. 利用阻抗生物传感器实时监测生物膜的生长和扩散。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad022
Matthew McGlennen, Markus Dieser, Christine M Foreman, Stephan Warnat

Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil-water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22-25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings.

One-sentence summary: This study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.

微生物生物膜污染是一个广泛存在的问题,需要精确和及时的检测技术来有效控制其生长。微制造电化学阻抗谱(EIS)生物传感器有望作为早期生物膜检测和监测消除的工具。本研究利用集成传感器的定制流动池系统,对流动条件下的生物膜生长进行实时阻抗测量,并与共聚焦激光扫描显微镜(CLSM)成像相关。EIS生物传感器上的生物膜生长在基本的含水生长介质(胰蛋白酶豆汤,TSB)和油水乳液(金属加工液,MWF)中呈s型衰减模式衰减,24小时后导致阻抗下降~ 22-25%。建立的生物膜的后续处理在TSB和MWF中分别增加了约14%和约41%的阻抗。在群体感应抑制剂(QSI)呋喃酮C-30存在的情况下,TSB和MWF的阻抗从初始时间点开始保持不变,分别为18小时和72小时。从CLSM成像中列举的生物膜变化证实了阻抗测量,治疗显著减少了生物膜。总的来说,这些结果支持微制造EIS生物传感器在原位评估生物膜生长和扩散方面的应用,并展示了在工业环境中使用的潜力。一句话总结:本研究展示了微制造电化学阻抗谱(EIS)生物传感器用于生物膜生长的实时监测和处理评估,为工业环境中的生物膜控制提供了有价值的见解。
{"title":"Monitoring biofilm growth and dispersal in real-time with impedance biosensors.","authors":"Matthew McGlennen,&nbsp;Markus Dieser,&nbsp;Christine M Foreman,&nbsp;Stephan Warnat","doi":"10.1093/jimb/kuad022","DOIUrl":"https://doi.org/10.1093/jimb/kuad022","url":null,"abstract":"<p><p>Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil-water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22-25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings.</p><p><strong>One-sentence summary: </strong>This study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10251927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streptomyces lividans 66 produces a protease inhibitor via a tRNA-utilizing enzyme interacting with a C-minus NRPS. 利文链霉菌66通过利用tRNA的酶与C-minus NRPS相互作用产生蛋白酶抑制剂。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad021
César Aguilar, Karina Verdel-Aranda, Hilda E Ramos-Aboites, Cuauhtémoc Licona-Cassani, Francisco Barona-Gómez

Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize.

Significance: The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.

具有蛋白酶抑制活性的小肽醛(SPAs)是由非核糖体肽合成酶(NRPS)合成的天然化合物。SPAs广泛应用于生物技术中,并已被用作治疗剂。它们在生理上也是相关的,并被认为可以调节其产生微生物的发育。此前,我们在生活链霉菌66中鉴定了一个NRPS样生物合成基因簇(BGC),该基因簇缺乏缩合(C)结构域,但包括属于亮氨酸/苯丙氨酸(L/F)转移酶家族的tRNA利用酶(tRUE)。该系统被预测将指导一种新的SPA的合成,我们将其命名为livipeptin。使用进化基因组挖掘方法,我们在不同链霉菌和相关生物的基因组中确认了L/F转移酶tRUE的存在,包括与预期的C-minus NRPS样蛋白的融合。然后,我们证明了已鉴定的L/F转移酶分歧tRUE同源物与C-负NRPS之间的遗传功能合作,从而合成了具有蛋白酶抑制活性的代谢组分。在RNA酶存在下的半合成分析表明,tRUE和C-minus NRPS酶之间的生产性相互作用确实是tRNA依赖性的。我们希望我们的发现能够促进SPAs的发现,以及蛋白酶介导的生物技术的发展,通过利用未发现的遗传基础来合成推定的乙酰leu/phe精氨酸蛋白酶抑制剂。此外,这些结果将有助于livipeptin的纯化和结构阐明,该蛋白已被证明难以进行化学表征。意义:天然产物生物合成基因的发现标志着我们对这些代谢物的理解取得了重大进展,例如它们的进化、活性和生物合成,但也为推进基因组挖掘方法提供了生物技术机会和知识。我们通过在绿链霉菌66中发现一种新的生物合成途径使这成为可能,该途径被证明可以指导一种强蛋白酶抑制剂的合成,称为livipeptin,遵循前所未有的生物合成规则和基因。因此,通过揭示预测控制乙酰leu/phe精氨酸蛋白酶抑制剂(包括难以捉摸的livipeptin)产生的遗传机制,这项研究使新的蛋白酶介导的生物技术以及从基因组数据中发现蛋白酶抑制剂的方法成为可能。
{"title":"Streptomyces lividans 66 produces a protease inhibitor via a tRNA-utilizing enzyme interacting with a C-minus NRPS.","authors":"César Aguilar,&nbsp;Karina Verdel-Aranda,&nbsp;Hilda E Ramos-Aboites,&nbsp;Cuauhtémoc Licona-Cassani,&nbsp;Francisco Barona-Gómez","doi":"10.1093/jimb/kuad021","DOIUrl":"10.1093/jimb/kuad021","url":null,"abstract":"<p><p>Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize.</p><p><strong>Significance: </strong>The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel image-based method for simultaneous counting of Lactobacillus and Saccharomyces in mixed culture fermentation. 一种基于图像的混合培养发酵中乳酸杆菌和酵母菌同时计数的新方法。
IF 3.4 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad007
Cecelia Williamson, Kevin Kennedy, Sayak Bhattacharya, Samir Patel, Jennifer Perry, Jason Bolton, Lewis Brian Perkins, Leo Li-Ying Chan

Mixed microorganism cultures are prevalent in the food industry. A variety of microbiological mixtures have been used in these unique fermenting processes to create distinctive flavor profiles and potential health benefits. Mixed cultures are typically not well characterized, which may be due to the lack of simple measurement tools. Image-based cytometry systems have been employed to automatically count bacteria or yeast cells. In this work, we aim to develop a novel image cytometry method to distinguish and enumerate mixed cultures of yeast and bacteria in beer products. Cellometer X2 from Nexcelom was used to count of Lactobacillus plantarum and Saccharomyces cerevisiae in mixed cultures using fluorescent dyes and size exclusion image analysis algorithm. Three experiments were performed for validation. (1) Yeast and bacteria monoculture titration, (2) mixed culture with various ratios, and (3) monitoring a Berliner Weisse mixed culture fermentation. All experiments were validated by comparing to manual counting of yeast and bacteria colony formation. They were highly comparable with ANOVA analysis showing p-value > 0.05. Overall, the novel image cytometry method was able to distinguish and count mixed cultures consistently and accurately, which may provide better characterization of mixed culture brewing applications and produce higher quality products.

混合微生物培养在食品工业中很普遍。在这些独特的发酵过程中使用了各种微生物混合物,以创造独特的风味特征和潜在的健康益处。混合培养通常不能很好地表征,这可能是由于缺乏简单的测量工具。基于图像的细胞计数系统已被用于自动计数细菌或酵母细胞。在这项工作中,我们的目标是开发一种新的图像细胞术方法来区分和枚举啤酒产品中的酵母和细菌混合培养物。采用Nexcelom公司的Cellometer X2对混合培养物中的植物乳杆菌和酿酒酵母菌进行荧光染色和大小排除图像分析。进行了三个实验验证。(1)酵母和细菌单一培养滴定,(2)不同比例的混合培养,(3)监测柏林威斯混合培养发酵。所有实验都通过与人工计数酵母和细菌菌落形成进行比较来验证。方差分析显示p值> 0.05,具有高度可比性。总的来说,新的图像细胞术方法能够一致和准确地区分和计数混合培养物,可以更好地表征混合培养物酿造应用并生产更高质量的产品。
{"title":"A novel image-based method for simultaneous counting of Lactobacillus and Saccharomyces in mixed culture fermentation.","authors":"Cecelia Williamson,&nbsp;Kevin Kennedy,&nbsp;Sayak Bhattacharya,&nbsp;Samir Patel,&nbsp;Jennifer Perry,&nbsp;Jason Bolton,&nbsp;Lewis Brian Perkins,&nbsp;Leo Li-Ying Chan","doi":"10.1093/jimb/kuad007","DOIUrl":"https://doi.org/10.1093/jimb/kuad007","url":null,"abstract":"<p><p>Mixed microorganism cultures are prevalent in the food industry. A variety of microbiological mixtures have been used in these unique fermenting processes to create distinctive flavor profiles and potential health benefits. Mixed cultures are typically not well characterized, which may be due to the lack of simple measurement tools. Image-based cytometry systems have been employed to automatically count bacteria or yeast cells. In this work, we aim to develop a novel image cytometry method to distinguish and enumerate mixed cultures of yeast and bacteria in beer products. Cellometer X2 from Nexcelom was used to count of Lactobacillus plantarum and Saccharomyces cerevisiae in mixed cultures using fluorescent dyes and size exclusion image analysis algorithm. Three experiments were performed for validation. (1) Yeast and bacteria monoculture titration, (2) mixed culture with various ratios, and (3) monitoring a Berliner Weisse mixed culture fermentation. All experiments were validated by comparing to manual counting of yeast and bacteria colony formation. They were highly comparable with ANOVA analysis showing p-value > 0.05. Overall, the novel image cytometry method was able to distinguish and count mixed cultures consistently and accurately, which may provide better characterization of mixed culture brewing applications and produce higher quality products.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9404105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Industrial Microbiology & Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1