Background: Japan has four types of intensive care units (ICUs) that are divided into two categories according to the management fee charged per day: ICU management fees 1 and 2 (ICU1/2) (equivalent to high-intensity staffing) and 3 and 4 (ICU3/4) (equivalent to low-intensity staffing). Although ICU1/2 charges a higher rate than ICU3/4, no cost-effectiveness analysis has been performed for ICU1/2. This study evaluated the clinical outcomes and cost-effectiveness of ICU1/2 compared with those of ICU3/4.
Methods: This retrospective observational study used a nationwide Japanese administrative database to identify patients admitted to ICUs between April 2020 and March 2021 and divided them into the ICU1/2 and ICU3/4 groups. The ICU mortality rates and in-hospital mortality rates were determined, and the incremental cost-effectiveness ratio (ICER) (Japanese Yen (JPY)/QALY), defined as the difference between quality-adjusted life year (QALY) and medical costs, was compared between ICU1/2 and ICU3/4. Data analysis was performed using the Chi-squared test; an ICER of < 5 million JPY/QALY was considered cost-effective.
Results: The ICU1/2 group (n = 71,412; 60.7%) had lower ICU mortality rates (ICU 1/2: 2.6% vs. ICU 3/4: 4.3%, p < 0.001) and lower in-hospital mortality rates (ICU 1/2: 6.1% vs. ICU 3/4: 8.9%, p < 0.001) than the ICU3/4 group (n = 46,330; 39.3%). The average cost per patient of ICU1/2 and ICU3/4 was 2,249,270 ± 1,955,953 JPY and 1,682,546 ± 1,588,928 JPY, respectively, with a difference of 566,724. The ICER was 718,659 JPY/QALY, which was below the cost-effectiveness threshold.
Conclusions: ICU1/2 is associated with lower ICU patient mortality than ICU3/4. Treatments under ICU1/2 are more cost-effective than those under ICU3/4, with an ICER of < 5 million JPY/QALY.
Background: Limiting driving pressure and mechanical power is associated with reduced mortality risk in both patients with and without acute respiratory distress syndrome. However, it is still poorly understood how the intensity of mechanical ventilation and its corresponding duration impact the risk of mortality.
Methods: Critically ill patients who received mechanical ventilation were identified from the Medical Information Mart for Intensive Care (MIMIC)-IV database. A visualization method was developed by calculating the odds ratio of survival for all combinations of ventilation duration and intensity to assess the relationship between the intensity and duration of mechanical ventilation and the mortality risk.
Results: A total of 6251 patients were included. The color-coded plot demonstrates the intuitive concept that episodes of higher dynamic mechanical power can only be tolerated for shorter durations. The three fitting contour lines represent 0%, 10%, and 20% increments in the mortality risk, respectively, and exhibit an exponential pattern: higher dynamic mechanical power is associated with an increased mortality risk with shorter exposure durations.
Conclusions: Cumulative exposure to higher intensities and/or longer duration of mechanical ventilation is associated with worse outcomes. Considering both the intensity and duration of mechanical ventilation may help evaluate patient outcomes and guide adjustments in mechanical ventilation to minimize harmful exposure.
Background: Heterogeneity among critically ill patients undergoing invasive mechanical ventilation (IMV) treatment could result in high mortality rates. Currently, there are no well-established indicators to help identify patients with a poor prognosis in advance, which limits physicians' ability to provide personalized treatment. This study aimed to investigate the association of oxygen saturation index (OSI) trajectory phenotypes with intensive care unit (ICU) mortality and ventilation-free days (VFDs) from a dynamic and longitudinal perspective.
Methods: A group-based trajectory model was used to identify the OSI-trajectory phenotypes. Associations between the OSI-trajectory phenotypes and ICU mortality were analyzed using doubly robust analyses. Then, a predictive model was constructed to distinguish patients with poor prognosis phenotypes.
Results: Four OSI-trajectory phenotypes were identified in 3378 patients: low-level stable, ascending, descending, and high-level stable. Patients with the high-level stable phenotype had the highest mortality and fewest VFDs. The doubly robust estimation, after adjusting for unbalanced covariates in a model using the XGBoost method for generating propensity scores, revealed that both high-level stable and ascending phenotypes were associated with higher mortality rates (odds ratio [OR]: 1.422, 95% confidence interval [CI] 1.246-1.623; OR: 1.097, 95% CI 1.027-1.172, respectively), while the descending phenotype showed similar ICU mortality rates to the low-level stable phenotype (odds ratio [OR] 0.986, 95% confidence interval [CI] 0.940-1.035). The predictive model could help identify patients with ascending or high-level stable phenotypes at an early stage (area under the curve [AUC] in the training dataset: 0.851 [0.827-0.875]; AUC in the validation dataset: 0.743 [0.709-0.777]).
Conclusions: Dynamic OSI-trajectory phenotypes were closely related to the mortality of ICU patients requiring IMV treatment and might be a useful prognostic indicator in critically ill patients.
The effort to minimize VILI risk must be multi-pronged. The need to adequately ventilate, a key determinant of hazardous power, is reduced by judicious permissive hypercapnia, reduction of innate oxygen demand, and by prone body positioning that promotes both efficient pulmonary gas exchange and homogenous distributions of local stress. Modifiable ventilator-related determinants of lung protection include reductions of tidal volume, plateau pressure, driving pressure, PEEP, inspiratory flow amplitude and profile (using longer inspiration to expiration ratios), and ventilation frequency. Underappreciated conditional cofactors of importance to modulate the impact of local specific power may include lower vascular pressures and blood flows. Employed together, these measures modulate ventilation power with the intent to avoid VILI while achieving clinically acceptable targets for pulmonary gas exchange.
Background: This study aimed to assess the impact of duration of early mobilisation on survivors of critical illness. The hypothesis was that interventions lasting over 40 min, as per the German guideline, positively affect the functional status at ICU discharge.
Methods: Prospective single-centre cohort study conducted in two ICUs in Germany. In 684 critically ill patients surviving an ICU stay > 24 h, out-of-bed mobilisation of more than 40 min was evaluated.
Results: Daily mobilisation ≥ 40 min was identified as an independent predictor of an improved functional status upon ICU discharge. This effect on the primary outcome measure, change of Mobility-Barthel until ICU discharge, was observed in three different models for baseline patient characteristics (average treatment effect (ATE), all three models p < 0.001). When mobilisation parameters like level of mobilisation, were included in the analysis, the average treatment effect disappeared [ATE 1.0 (95% CI - 0.4 to 2.4), p = 0.16].
Conclusions: A mobilisation duration of more than 40 min positively impacts functional outcomes at ICU discharge. However, the maximum level achieved during ICU stay was the most crucial factor regarding adequate dosage, as higher duration did not show an additional benefit in patients with already high mobilisation levels.
Trial registration: Prospective Registry of Mobilization-, Routine- and Outcome Data of Intensive Care Patients (MOBDB), NCT03666286. Registered 11 September 2018-retrospectively registered, https://classic.
Clinicaltrials: gov/ct2/show/NCT03666286 .
Background: Neuromuscular blockade agents (NMBAs) can be used to facilitate mechanical ventilation in critically ill patients. Accumulating evidence has shown that NMBAs may be associated with intensive care unit (ICU)-acquired weakness and poor outcomes. However, the long-term impact of NMBAs on mortality is still unclear.
Methods: We conducted a retrospective analysis using the 2015-2019 critical care databases at Taichung Veterans General Hospital, a referral center in central Taiwan, as well as the Taiwan nationwide death registry profile.
Results: A total of 5709 ventilated patients were eligible for further analysis, with 63.8% of them were male. The mean age of enrolled subjects was 67.8 ± 15.8 years, and the one-year mortality was 48.3% (2755/5709). Compared with the survivors, the non-survivors had a higher age (70.4 ± 14.9 vs 65.4 ± 16.3, p < 0.001), Acute Physiology and Chronic Health Evaluation II score (28.0 ± 6.2 vs 24.7 ± 6.5, p < 0.001), a longer duration of ventilator use (12.6 ± 10.6 days vs 7.8 ± 8.5 days, p < 0.001), and were more likely to receive NMBAs for longer than 48 h (11.1% vs 7.8%, p < 0.001). After adjusting for age, sex, and relevant covariates, the use of NMBAs for longer than 48 h was found to be independently associated with an increased risk of mortality (adjusted HR: 1.261; 95% CI: 1.07-1.486). The analysis of effect modification revealed that this association was tended to be strong in patients with a Charlson Comorbidity Index of 3 or higher.
Conclusions: Our study demonstrated that prolonged use of NMBAs was associated with an increased risk of long-term mortality in critically ill patients requiring mechanical ventilation. Further studies are needed to validate our findings.