Pub Date : 2024-11-05DOI: 10.1016/j.jmapro.2024.10.068
Fukun Li , Yang Bai , Haixiang Hu , Longxiang Li , Feng Zhang , Xiao Luo , Xuejun Zhang
Reactive force field molecular dynamics simulation (ReaxFF-MD) was utilized to investigate the atomic-level material removal mechanism of fused silica polished by cerium oxide (111) abrasives during the computer-controlled optical surface (CCOS) process. The study reveals that interactions between the cerium oxide abrasives and fused silica surface in the presence of water molecules result in the formation of structures such as Ce/Si-OH. During polishing, Ce-O-Si bridge bonds are formed, which transmit mechanical forces to the surface of the fused silica glass, leading to atomic removal through stretching. The CCOS process is characterized by a synergistic interaction of both mechanical and chemical mechanisms. The study also explored the chemical and mechanical effects on the surfaces of cerium oxide abrasives and fused silica under varying pH, pressure, and slip velocity conditions. Experimental validation demonstrated that at pH 11, the surface roughness reached 0.126 nm, and the material removal rate (MRR) peaked at 593.56 nm/min under a high polishing speed of 375 RPM. Additionally, higher polishing pressure (0.2 MPa) further enhanced removal efficiency, with an MRR of 214.63 nm/min. These findings provide valuable insights for optimizing process parameters in practical applications and offer crucial theoretical guidance for achieving picometer-level ultra-smooth surface processing.
{"title":"Atomic-scale insights into the material removal mechanism of cerium oxide polished fused silica based on ReaxFF-MD","authors":"Fukun Li , Yang Bai , Haixiang Hu , Longxiang Li , Feng Zhang , Xiao Luo , Xuejun Zhang","doi":"10.1016/j.jmapro.2024.10.068","DOIUrl":"10.1016/j.jmapro.2024.10.068","url":null,"abstract":"<div><div>Reactive force field molecular dynamics simulation (ReaxFF-MD) was utilized to investigate the atomic-level material removal mechanism of fused silica polished by cerium oxide (111) abrasives during the computer-controlled optical surface (CCOS) process. The study reveals that interactions between the cerium oxide abrasives and fused silica surface in the presence of water molecules result in the formation of structures such as Ce/Si-OH. During polishing, Ce-O-Si bridge bonds are formed, which transmit mechanical forces to the surface of the fused silica glass, leading to atomic removal through stretching. The CCOS process is characterized by a synergistic interaction of both mechanical and chemical mechanisms. The study also explored the chemical and mechanical effects on the surfaces of cerium oxide abrasives and fused silica under varying pH, pressure, and slip velocity conditions. Experimental validation demonstrated that at pH 11, the surface roughness reached 0.126 nm, and the material removal rate (MRR) peaked at 593.56 nm/min under a high polishing speed of 375 RPM. Additionally, higher polishing pressure (0.2 MPa) further enhanced removal efficiency, with an MRR of 214.63 nm/min. These findings provide valuable insights for optimizing process parameters in practical applications and offer crucial theoretical guidance for achieving picometer-level ultra-smooth surface processing.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 339-352"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jmapro.2024.10.078
Hang Zhang , Donghao Liu , Hao Zhang , Guilian Wang
Monocrystalline silicon is prone to brittle fracture during the nano-cutting process. Surface modification through ion implantation to create an amorphous layer on monocrystalline silicon significantly enhances its processability. This paper conducted molecular dynamics simulations to deeply reveal the nanometric cutting mechanism for monocrystalline silicon with an amorphous layer. The influence of the amorphous layer on material removal, subsurface damage, cutting forces, stress distribution, and temperature profiles was analyzed and thoroughly discussed. The calculating results reveal that primary material removal mode transitions from shearing to extrusion under the influence of the amorphous layer. The presence of an amorphous layer can efficiently reduce stress concentration and defects in the nanometric machining process. When the thickness of the amorphous layer equals the cutting depth of the tool, subsurface damage is reduced to approximately 2 nm, indicating that an optimal surface quality is achieved. When the thickness of the amorphous layer reaches more than cutting depth, the hydrostatic stress of the monocrystalline silicon part is significantly lower than the phase transition threshold of 12 GPa, which greatly reduces the occurrence of phase transition. Furthermore, the formation and evolution of shear bands are the primary reasons for the fluctuations in cutting force. The cutting temperature is closely related to structural transformations. The heat generated by shear slip in monocrystalline silicon material is higher than the heat generated by plastic deformation of material in the amorphous layer. Moreover, the heat energy produced by plastic deformation of amorphous layer atoms exceeds that generated by structural transformation of monocrystalline silicon atoms. This work reveals the nanometric cutting behavior of the monocrystalline silicon material with amorphous layer surfaces based on phase transformation. It can provide effective references for the preparation of amorphous layer thickness and selection of cutting parameters in nanometric cutting process of the monocrystalline silicon with amorphous layer surfaces.
{"title":"Study on the nano-cutting mechanism of monocrystalline silicon material with an amorphous layer by molecular dynamics simulations","authors":"Hang Zhang , Donghao Liu , Hao Zhang , Guilian Wang","doi":"10.1016/j.jmapro.2024.10.078","DOIUrl":"10.1016/j.jmapro.2024.10.078","url":null,"abstract":"<div><div>Monocrystalline silicon is prone to brittle fracture during the nano-cutting process. Surface modification through ion implantation to create an amorphous layer on monocrystalline silicon significantly enhances its processability. This paper conducted molecular dynamics simulations to deeply reveal the nanometric cutting mechanism for monocrystalline silicon with an amorphous layer. The influence of the amorphous layer on material removal, subsurface damage, cutting forces, stress distribution, and temperature profiles was analyzed and thoroughly discussed. The calculating results reveal that primary material removal mode transitions from shearing to extrusion under the influence of the amorphous layer. The presence of an amorphous layer can efficiently reduce stress concentration and defects in the nanometric machining process. When the thickness of the amorphous layer equals the cutting depth of the tool, subsurface damage is reduced to approximately 2 nm, indicating that an optimal surface quality is achieved. When the thickness of the amorphous layer reaches more than cutting depth, the hydrostatic stress of the monocrystalline silicon part is significantly lower than the phase transition threshold of 12 GPa, which greatly reduces the occurrence of phase transition. Furthermore, the formation and evolution of shear bands are the primary reasons for the fluctuations in cutting force. The cutting temperature is closely related to structural transformations. The heat generated by shear slip in monocrystalline silicon material is higher than the heat generated by plastic deformation of material in the amorphous layer. Moreover, the heat energy produced by plastic deformation of amorphous layer atoms exceeds that generated by structural transformation of monocrystalline silicon atoms. This work reveals the nanometric cutting behavior of the monocrystalline silicon material with amorphous layer surfaces based on phase transformation. It can provide effective references for the preparation of amorphous layer thickness and selection of cutting parameters in nanometric cutting process of the monocrystalline silicon with amorphous layer surfaces.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 310-320"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jmapro.2024.10.084
M. Shanmuka Srinivas , Shyam , M. Ravi Sankar , O.P. Khatri , A. Udayakumar
The Carbon fibre reinforced Silicon Carbide (Cf/Sic) composites are widely used in different industries such as automotive, aerospace, etc. The Cf/SiC is indigenous developed and detail of the fabrication procedure is presented. The nano fluid, namely Graphene Oxide Organo Boron (GOOB) is developed indigenously for using as the cutting fluid. This nano fluid is mixed in green cutting fluid (GCF) in different proportions and the concentration is optimized. The nano fluid is characterized by advanced techniques for the confirmation. To reduce the surface roughness on the fabricated Cf/SiC, end milling operation is carried out with different machining environments such as dry, flood cooling with cutting fluid and nano fluid and minimum quantity cutting fluid with nano fluid. The machining operations are carried out by varying different input parameters, namely, cutting speed, feed rate, and depth of cut. The results indicated that the minimum surface roughness of 1.845 μm is obtained when 0.5 % GOOB with GCF is used. This work would benefit the researchers exploring the preparation and interaction mechanism of the indigenously developed nano green cutting fluid for machining Cf/SiC-based ceramic matrix composites.
{"title":"Machining of Cf/SiC composite with indigenously developed nano green cutting fluid: Machined surface fibre morphology","authors":"M. Shanmuka Srinivas , Shyam , M. Ravi Sankar , O.P. Khatri , A. Udayakumar","doi":"10.1016/j.jmapro.2024.10.084","DOIUrl":"10.1016/j.jmapro.2024.10.084","url":null,"abstract":"<div><div>The Carbon fibre reinforced Silicon Carbide (Cf/Sic) composites are widely used in different industries such as automotive, aerospace, etc. The Cf/SiC is indigenous developed and detail of the fabrication procedure is presented. The nano fluid, namely Graphene Oxide Organo Boron (GOOB) is developed indigenously for using as the cutting fluid. This nano fluid is mixed in green cutting fluid (GCF) in different proportions and the concentration is optimized. The nano fluid is characterized by advanced techniques for the confirmation. To reduce the surface roughness on the fabricated Cf/SiC, end milling operation is carried out with different machining environments such as dry, flood cooling with cutting fluid and nano fluid and minimum quantity cutting fluid with nano fluid. The machining operations are carried out by varying different input parameters, namely, cutting speed, feed rate, and depth of cut. The results indicated that the minimum surface roughness of 1.845 μm is obtained when 0.5 % GOOB with GCF is used. This work would benefit the researchers exploring the preparation and interaction mechanism of the indigenously developed nano green cutting fluid for machining Cf/SiC-based ceramic matrix composites.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 296-309"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser impact welding (LIW) joints for the center exists springback region, resulting in a small effective welding area seriously affects the LIW joints performance problems. This paper for the first time put forward the vacuum environment LIW process, to carry out the vacuum environment of the two dissimilar lightweight metal magnesium/aluminum (Mg/Al) LIW. Results of the research showed that no springback occurred in the welded area. In order to reveal the vacuum environment LIW mechanism, the surface and cross-section morphological characteristics, weld interface microstructure, interface waveform element content and mechanical properties of laser impact welded Mg/Al dissimilar metals were investigated by optical microscope (OM), scanning electron microscope (SEM), electron backscattering diffraction (EBSD), energy spectrometry (EDS), and the universal testing machine. Studies have shown that the experimental success rate in the vacuum environment is much higher than that in the atmospheric environment, and the vacuum environment eliminates the springback cracking defect phenomenon generated in the center of the welded joints, which greatly increases the effective welding area of the weld. The number of Mg grain refinement in the interface region of the vacuum environment welding is more, and the bonding force of the two-plate welding is increased. Significant orientation differences, severe plastic deformation and high strain at the weld interface are one of the reasons for the successful LIW. Mg/Al welding samples produced elemental diffusion phenomenon, no obvious melting phenomenon, which is conducive to improving the welding quality. Tensile strength of the welded samples in the vacuum environment was higher than that in the atmospheric environment. Using the SPH-Lagrange coupling method, numerical simulations were carried out to study the trends shear stress, pressure, velocity, temperature and equivalent plastic strain distribution at the weld interface under vacuum environment, which revealed the interface wave formation mechanism in the center of laser impact welded joints with no springback cracking phenomenon. Vacuum laser impact welding opens up a new technology pathway for LIW of Mg/Al welded joints without springback in the center, which plays an important role in improving Mg/Al welding performance.
{"title":"Microstructure analysis and interfacial wave formation mechanism research of Mg/Al dissimilar metal laser impact welding in a vacuum environment","authors":"Yu Zhou, Yinhua Cao, Maomao Cui, Zhang Yan, Xiao Wang, Huixia Liu","doi":"10.1016/j.jmapro.2024.11.001","DOIUrl":"10.1016/j.jmapro.2024.11.001","url":null,"abstract":"<div><div>Laser impact welding (LIW) joints for the center exists springback region, resulting in a small effective welding area seriously affects the LIW joints performance problems. This paper for the first time put forward the vacuum environment LIW process, to carry out the vacuum environment of the two dissimilar lightweight metal magnesium/aluminum (Mg/Al) LIW. Results of the research showed that no springback occurred in the welded area. In order to reveal the vacuum environment LIW mechanism, the surface and cross-section morphological characteristics, weld interface microstructure, interface waveform element content and mechanical properties of laser impact welded Mg/Al dissimilar metals were investigated by optical microscope (OM), scanning electron microscope (SEM), electron backscattering diffraction (EBSD), energy spectrometry (EDS), and the universal testing machine. Studies have shown that the experimental success rate in the vacuum environment is much higher than that in the atmospheric environment, and the vacuum environment eliminates the springback cracking defect phenomenon generated in the center of the welded joints, which greatly increases the effective welding area of the weld. The number of Mg grain refinement in the interface region of the vacuum environment welding is more, and the bonding force of the two-plate welding is increased. Significant orientation differences, severe plastic deformation and high strain at the weld interface are one of the reasons for the successful LIW. Mg/Al welding samples produced elemental diffusion phenomenon, no obvious melting phenomenon, which is conducive to improving the welding quality. Tensile strength of the welded samples in the vacuum environment was higher than that in the atmospheric environment. Using the SPH-Lagrange coupling method, numerical simulations were carried out to study the trends shear stress, pressure, velocity, temperature and equivalent plastic strain distribution at the weld interface under vacuum environment, which revealed the interface wave formation mechanism in the center of laser impact welded joints with no springback cracking phenomenon. Vacuum laser impact welding opens up a new technology pathway for LIW of Mg/Al welded joints without springback in the center, which plays an important role in improving Mg/Al welding performance.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 321-338"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.jmapro.2024.10.067
Qihao Xu , Shenglei Xiao , Yi-Qi Wang , Hang Gao
SiC-based ceramic matrix composites reinforced by continuous fibre (SiC-based FRCMCs) are distinguished by their superior mechanical properties and high-temperature resistance, positioning them as candidates for demanding high-temperature applications. However, their brittleness, hardness, and heterogeneity present machining challenges, e.g., large machining force, unsynchronised material removal, and complex crack propagation, frequently resulting in severe damage even with advanced grinding methods. This paper critically reviews recent studies addressing these grinding difficulties, initially employing a combination of fibre-related angles to clarify the basic scratching behaviours, and then systematically elucidating the damage mechanisms from scratching to grinding. Distinctive aspects of damage mechanics have been also discussed, including fibre-induced differences in up grinding versus down grinding, and the influence from fibre architecture relative to grinding conditions. Moreover, the corresponding damage evaluations for both surface and subsurface have been summarised to understand how to effectively and efficiently acquire the data, bridging the gap between scientific exploration and industrial application. Lastly, this paper attempts to provide an outlook on future developments in this domain.
{"title":"A review on the grinding of SiC-based ceramic matrix composites reinforced by continuous fibre: Damage mechanisms and evaluations","authors":"Qihao Xu , Shenglei Xiao , Yi-Qi Wang , Hang Gao","doi":"10.1016/j.jmapro.2024.10.067","DOIUrl":"10.1016/j.jmapro.2024.10.067","url":null,"abstract":"<div><div>SiC-based ceramic matrix composites reinforced by continuous fibre (SiC-based FRCMCs) are distinguished by their superior mechanical properties and high-temperature resistance, positioning them as candidates for demanding high-temperature applications. However, their brittleness, hardness, and heterogeneity present machining challenges, e.g., large machining force, unsynchronised material removal, and complex crack propagation, frequently resulting in severe damage even with advanced grinding methods. This paper critically reviews recent studies addressing these grinding difficulties, initially employing a combination of fibre-related angles to clarify the basic scratching behaviours, and then systematically elucidating the damage mechanisms from scratching to grinding. Distinctive aspects of damage mechanics have been also discussed, including fibre-induced differences in up grinding versus down grinding, and the influence from fibre architecture relative to grinding conditions. Moreover, the corresponding damage evaluations for both surface and subsurface have been summarised to understand how to effectively and efficiently acquire the data, bridging the gap between scientific exploration and industrial application. Lastly, this paper attempts to provide an outlook on future developments in this domain.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 261-295"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.jmapro.2024.10.081
Yue Li , Lelin Yang , Jun Deng , Boyu Zhang , Shu Zhu
Improper tool trajectory selection during CFRP curved component milling can lead to sudden changes in instantaneous cutting parameters, such as fiber cutting angle, resulting in significant machining damage and profile deviation. In this paper, a novel tool trajectory planning method for CFRP curved component milling is proposed. The key innovation of this method lies in considering the effect of tool variable inclination on fiber removal behavior. Employing the developed method, the influence of trajectories under different tool inclination angles on the milling quality of CFRP surfaces is thoroughly investigated. The results indicate that, to minimize machining damage, an inclination angle within 10° is recommended when the fiber cutting direction is in the range of 0°-60° and 150°-180°. For fiber cutting directions falling within 60°-150°, it is recommended to select an inclination angle above 25°. Additionally, the novel tool trajectory planning method decreases CFRP surface profile errors by over 20 %.
{"title":"Tool trajectory planning method for CFRP curved component milling: Considering variable inclination to adapt to different directions of fiber layers","authors":"Yue Li , Lelin Yang , Jun Deng , Boyu Zhang , Shu Zhu","doi":"10.1016/j.jmapro.2024.10.081","DOIUrl":"10.1016/j.jmapro.2024.10.081","url":null,"abstract":"<div><div>Improper tool trajectory selection during CFRP curved component milling can lead to sudden changes in instantaneous cutting parameters, such as fiber cutting angle, resulting in significant machining damage and profile deviation. In this paper, a novel tool trajectory planning method for CFRP curved component milling is proposed. The key innovation of this method lies in considering the effect of tool variable inclination on fiber removal behavior. Employing the developed method, the influence of trajectories under different tool inclination angles on the milling quality of CFRP surfaces is thoroughly investigated. The results indicate that, to minimize machining damage, an inclination angle within 10° is recommended when the fiber cutting direction is in the range of 0°-60° and 150°-180°. For fiber cutting directions falling within 60°-150°, it is recommended to select an inclination angle above 25°. Additionally, the novel tool trajectory planning method decreases CFRP surface profile errors by over 20 %.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 238-248"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The CNC machining of non-zero genus surfaces in B-rep models has become a prevalent challenge in modern manufacturing. The computational complexity inherent in generating tool paths for such geometries remains a significant hurdle. In this study, an efficient path planning algorithm tailored for porous structures of this nature is presented. Initially, we create a parametric grid using the adaptive iso-scallop height method and subsequently utilize a marching cells algorithm to construct a cell grid capable of preserving arbitrary boundaries. Based on the graph structure naturally induced by marching cells, we employ a designated weighting method to establish a minimum spanning tree, upon which a path with a singular start and end point is generated. We conduct various experiments on examples from industrial scenarios as well as synthetic examples. The results show the superior performance and effectiveness of our method concerning scallop height limits, sharp turns, and structural stability.
{"title":"Single start end tool path generation for arbitrary porous surfaces","authors":"Li-Yong Shen, Bowen Lyu, Hong-Yu Ma, Shuo-Peng Chen","doi":"10.1016/j.jmapro.2024.10.050","DOIUrl":"10.1016/j.jmapro.2024.10.050","url":null,"abstract":"<div><div>The CNC machining of non-zero genus surfaces in B-rep models has become a prevalent challenge in modern manufacturing. The computational complexity inherent in generating tool paths for such geometries remains a significant hurdle. In this study, an efficient path planning algorithm tailored for porous structures of this nature is presented. Initially, we create a parametric grid using the adaptive iso-scallop height method and subsequently utilize a marching cells algorithm to construct a cell grid capable of preserving arbitrary boundaries. Based on the graph structure naturally induced by marching cells, we employ a designated weighting method to establish a minimum spanning tree, upon which a path with a singular start and end point is generated. We conduct various experiments on examples from industrial scenarios as well as synthetic examples. The results show the superior performance and effectiveness of our method concerning scallop height limits, sharp turns, and structural stability.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 249-260"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.jmapro.2024.10.051
Shengping Zhang , Junshan Hu , Lei Xu , Jinyi Shen , Shanyong Xuan , Wei Tian
In aircraft maintenance, the delaminated composites are commonly repaired by riveting to inhibit delamination propagation and restore load-bearing performance. Making connecting holes in damaged areas is inevitable and may cause damage aggravation. This paper focused on the axial force and exit delamination damage in the drilling of delaminated composites. The influence factors including spindle speeds, feeds, drilling positions, and delamination locations and widths were considered for the drilling test, in which the axial force was collected to analyze the interaction mechanism between the tool and workpiece. The equivalent delamination factor was used to evaluate exit damage. The quadratic nonlinear regression (QNR) and Support Vector Regression (SVR) models were built to predict the cutting force curve and exit damage, respectively. The results revealed that the cutting force curves of the delaminated laminates produced obvious concavity when the drill bit reached the position of delamination. The optimal cutting conditions were 10,000 r/min and 100 mm/min for both intact and delaminated laminates in the drilling test. It was better to make holes in the inside of the damaged area to obtain small equivalent delamination factor and the increase of delamination width would aggravate exit damage. The errors of the QNR model were controlled within 13.40 % and 11.07 % for the intact and delaminated laminates, respectively. The maximum error of SVR models was 3.79 %. The results of QNR and SVR models had been proven to be accurate.
{"title":"Analysis and prediction of axial force and exit damage in drilling of composites with delamination damage","authors":"Shengping Zhang , Junshan Hu , Lei Xu , Jinyi Shen , Shanyong Xuan , Wei Tian","doi":"10.1016/j.jmapro.2024.10.051","DOIUrl":"10.1016/j.jmapro.2024.10.051","url":null,"abstract":"<div><div>In aircraft maintenance, the delaminated composites are commonly repaired by riveting to inhibit delamination propagation and restore load-bearing performance. Making connecting holes in damaged areas is inevitable and may cause damage aggravation. This paper focused on the axial force and exit delamination damage in the drilling of delaminated composites. The influence factors including spindle speeds, feeds, drilling positions, and delamination locations and widths were considered for the drilling test, in which the axial force was collected to analyze the interaction mechanism between the tool and workpiece. The equivalent delamination factor was used to evaluate exit damage. The quadratic nonlinear regression (QNR) and Support Vector Regression (SVR) models were built to predict the cutting force curve and exit damage, respectively. The results revealed that the cutting force curves of the delaminated laminates produced obvious concavity when the drill bit reached the position of delamination. The optimal cutting conditions were 10,000 r/min and 100 mm/min for both intact and delaminated laminates in the drilling test. It was better to make holes in the inside of the damaged area to obtain small equivalent delamination factor and the increase of delamination width would aggravate exit damage. The errors of the QNR model were controlled within 13.40 % and 11.07 % for the intact and delaminated laminates, respectively. The maximum error of SVR models was 3.79 %. The results of QNR and SVR models had been proven to be accurate.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 169-188"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.jmapro.2024.10.082
Xuenan Li , Xiuzhi Wang , Shengqiang Yang , Xiuhong Li , Wenhui Li , Huiting Shi
The bearing ring is the critical component of bearings, which play an important role in any rotary mechanism. A better finishing surface quality of bearing rings would improve their performance. Nevertheless, one of the challenges is to realize overall uniformity finishing under the condition that non-destructive clamping. Accordingly, this paper proposed a bearing ring processing method based on barrel finishing, which can realize overall uniformity finishing by the floating clamp of bearing ring. The granular media flow behavior is methodically set up by discrete element method (DEM) simulation, which is a vital issue in the mass finishing industry. Then the finishing experiments are conducted to investigate the surface roughness and morphology. The effect of vessel rotation speed, granular media filling level, and configuration of support bars on granular media flowability was firstly investigated. And then the effect of granular media flowability on bearing ring processing mechanism was further studied. The results show that the better flowability of granular media, the greater media kinetic energy reaching the surface of bearing ring, which means the erosion behavior is intensive. The higher collision behavior between media and bearing ring occurs when the cataracting pattern is dominant. The results indicate that the optimal finishing performance would be obtained at the rotation speed of 40 rpm, filling level of 80 %, and the configuration of support bars of 350 mm. After finishing experiment, the surface roughness and morphology of all surfaces were improved.
轴承套圈是轴承的关键部件,在任何旋转机构中都起着重要作用。提高轴承套圈的精加工表面质量可以改善其性能。然而,如何在无损装夹的条件下实现整体均匀的精加工是一个难题。因此,本文提出了一种基于滚筒精加工的轴承套圈加工方法,通过轴承套圈的浮动夹紧实现整体均匀精加工。通过离散元法(DEM)模拟,有条不紊地建立了颗粒介质的流动行为,这在大规模精加工行业中是一个至关重要的问题。然后进行精加工实验,研究表面粗糙度和形态。首先研究了容器转速、颗粒介质填充量和支撑杆配置对颗粒介质流动性的影响。然后进一步研究了颗粒介质流动性对轴承套圈加工机理的影响。结果表明,颗粒介质流动性越好,到达轴承套圈表面的介质动能越大,这意味着侵蚀行为越强烈。当白内障模式占主导地位时,介质与轴承套圈之间的碰撞行为较多。结果表明,在转速为 40 rpm、填充度为 80 %、支撑杆配置为 350 mm 时,可获得最佳的精加工性能。精加工实验后,所有表面的粗糙度和形态都得到了改善。
{"title":"Research on bearing ring processing mechanism by barrel finishing based on granular media flow behavior","authors":"Xuenan Li , Xiuzhi Wang , Shengqiang Yang , Xiuhong Li , Wenhui Li , Huiting Shi","doi":"10.1016/j.jmapro.2024.10.082","DOIUrl":"10.1016/j.jmapro.2024.10.082","url":null,"abstract":"<div><div>The bearing ring is the critical component of bearings, which play an important role in any rotary mechanism. A better finishing surface quality of bearing rings would improve their performance. Nevertheless, one of the challenges is to realize overall uniformity finishing under the condition that non-destructive clamping. Accordingly, this paper proposed a bearing ring processing method based on barrel finishing, which can realize overall uniformity finishing by the floating clamp of bearing ring. The granular media flow behavior is methodically set up by discrete element method (DEM) simulation, which is a vital issue in the mass finishing industry. Then the finishing experiments are conducted to investigate the surface roughness and morphology. The effect of vessel rotation speed, granular media filling level, and configuration of support bars on granular media flowability was firstly investigated. And then the effect of granular media flowability on bearing ring processing mechanism was further studied. The results show that the better flowability of granular media, the greater media kinetic energy reaching the surface of bearing ring, which means the erosion behavior is intensive. The higher collision behavior between media and bearing ring occurs when the cataracting pattern is dominant. The results indicate that the optimal finishing performance would be obtained at the rotation speed of 40 rpm, filling level of 80 %, and the configuration of support bars of 350 mm. After finishing experiment, the surface roughness and morphology of all surfaces were improved.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 209-223"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.jmapro.2024.10.061
Jie Yi , Xurui Wang , Qinghua Song , Dong Han , Junfeng Xiang
Titanium alloys are extensively utilized due to their exceptional corrosion resistance, high specific strength, temperature resilience, and biocompatibility. However, the challenges such as poor thermal conductivity, pronounced micro-machining size effects, and the sensitivity of micro-thin wall structures to residual stress complicate the machining of titanium alloy micro-thin walls. This paper investigates the use of supercritical CO2 to assist in arc micro-thin wall milling experiments of titanium alloys, aiming to elucidate the influence of various process parameters on micro-milling performance. The mesoscale prediction model developed in this study shows that the time-varying and static deflection deformations of micro-thin walls cooled by supercritical CO2 are approximately half of those observed under dry cutting conditions. To compare and optimize micro-milling performance metrics, an RVEA-entropy weight TOPSIS optimization scheme was developed, and combined with several high-dimensional multi-objective optimization algorithms. Integrating this with micro-milling finite element model, an iterative optimization and reverification strategy was proposed. The optimized parameters combination achieved through this method reduced micro-milling force, top deformation, and side deformation by 32.5 %, 24.6 %, and 24.3 %, respectively. The research approach and optimization strategy presented in this paper offer valuable insights for enhancing the machining precision of mesoscale titanium alloy micro-thin-wall structures.
{"title":"Exploring multi-deformation mechanism and control of arc thin-walled structures during supercritical CO2 assisted micro milling","authors":"Jie Yi , Xurui Wang , Qinghua Song , Dong Han , Junfeng Xiang","doi":"10.1016/j.jmapro.2024.10.061","DOIUrl":"10.1016/j.jmapro.2024.10.061","url":null,"abstract":"<div><div>Titanium alloys are extensively utilized due to their exceptional corrosion resistance, high specific strength, temperature resilience, and biocompatibility. However, the challenges such as poor thermal conductivity, pronounced micro-machining size effects, and the sensitivity of micro-thin wall structures to residual stress complicate the machining of titanium alloy micro-thin walls. This paper investigates the use of supercritical CO<sub>2</sub> to assist in arc micro-thin wall milling experiments of titanium alloys, aiming to elucidate the influence of various process parameters on micro-milling performance. The mesoscale prediction model developed in this study shows that the time-varying and static deflection deformations of micro-thin walls cooled by supercritical CO<sub>2</sub> are approximately half of those observed under dry cutting conditions. To compare and optimize micro-milling performance metrics, an RVEA-entropy weight TOPSIS optimization scheme was developed, and combined with several high-dimensional multi-objective optimization algorithms. Integrating this with micro-milling finite element model, an iterative optimization and reverification strategy was proposed. The optimized parameters combination achieved through this method reduced micro-milling force, top deformation, and side deformation by 32.5 %, 24.6 %, and 24.3 %, respectively. The research approach and optimization strategy presented in this paper offer valuable insights for enhancing the machining precision of mesoscale titanium alloy micro-thin-wall structures.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 189-208"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}