首页 > 最新文献

Journal of Mathematical Imaging and Vision最新文献

英文 中文
Analysis of (sub-)Riemannian PDE-G-CNNs (亚)黎曼pde - g - cnn的分析
4区 数学 Q1 Mathematics Pub Date : 2023-04-16 DOI: 10.1007/s10851-023-01147-w
Gijs Bellaard, Daan L. J. Bon, Gautam Pai, Bart M. N. Smets, Remco Duits
Abstract Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning. Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs) generalizes G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously (1) reduce network complexity, (2) increase classification performance, and (3) provide geometric interpretability. Their implementations primarily consist of linear and morphological convolutions with kernels. In this paper, we show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets. Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels are related to association fields from neurogeometry.
群等变卷积神经网络(g - cnn)已成功应用于几何深度学习。通常,g - cnn比cnn有一个优势,即它们不会浪费网络容量来训练应该在网络中硬编码的对称性。最近引入的基于pde的g - cnn框架(pde - g - cnn)是对g - cnn的推广。pde - g - cnn的核心优势是同时(1)降低网络复杂度,(2)提高分类性能,(3)提供几何可解释性。它们的实现主要由带核的线性和形态卷积组成。在本文中,我们证明了先前提出的近似形态学核并不总是准确地接近精确核。更具体地说,根据黎曼度量的空间各向异性,我们认为必须采用次黎曼近似。我们通过提供一个新的近似核来解决这个问题,该核不受各向异性的影响。我们提供了新的定理,对近似核具有更好的误差估计,并证明它们都具有与精确核相同的反射对称性。我们在两个数据集上测试了PDE-G-CNN框架内多个近似核的有效性,并观察到了新的近似核的改进。我们报告说,pde - g - cnn再次允许大大降低网络复杂性,同时在两个数据集上具有与g - cnn和cnn相当或更好的性能。此外,pde - g - cnn具有比g - cnn更好的几何可解释性,因为形态学核与神经几何学的关联场相关。
{"title":"Analysis of (sub-)Riemannian PDE-G-CNNs","authors":"Gijs Bellaard, Daan L. J. Bon, Gautam Pai, Bart M. N. Smets, Remco Duits","doi":"10.1007/s10851-023-01147-w","DOIUrl":"https://doi.org/10.1007/s10851-023-01147-w","url":null,"abstract":"Abstract Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning. Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs) generalizes G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously (1) reduce network complexity, (2) increase classification performance, and (3) provide geometric interpretability. Their implementations primarily consist of linear and morphological convolutions with kernels. In this paper, we show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets. Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels are related to association fields from neurogeometry.","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136243274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Appreciation to Journal of Mathematical Imaging and Vision Reviewers 感谢《数学成像与视觉评论杂志》
IF 2 4区 数学 Q1 Mathematics Pub Date : 2023-04-01 DOI: 10.1007/s10851-023-01141-2
{"title":"Appreciation to Journal of Mathematical Imaging and Vision Reviewers","authors":"","doi":"10.1007/s10851-023-01141-2","DOIUrl":"https://doi.org/10.1007/s10851-023-01141-2","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52392130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Generalisation of Flat Morphology, II: Main Properties, Duality and Hybrid Operators 平面形态学的一个推广,Ⅱ:主要性质、对偶性和混合算子
IF 2 4区 数学 Q1 Mathematics Pub Date : 2023-03-28 DOI: 10.1007/s10851-023-01145-y
C. Ronse
{"title":"A Generalisation of Flat Morphology, II: Main Properties, Duality and Hybrid Operators","authors":"C. Ronse","doi":"10.1007/s10851-023-01145-y","DOIUrl":"https://doi.org/10.1007/s10851-023-01145-y","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47596364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Physically Admissible Stokes Vector Reconstruction in Linear Polarimetric Imaging 线性偏振成像中物理上可接受的Stokes矢量重建
IF 2 4区 数学 Q1 Mathematics Pub Date : 2023-01-11 DOI: 10.1007/s10851-022-01139-2
Carole Le Guyader, Samia Ainouz, S. Canu
{"title":"A Physically Admissible Stokes Vector Reconstruction in Linear Polarimetric Imaging","authors":"Carole Le Guyader, Samia Ainouz, S. Canu","doi":"10.1007/s10851-022-01139-2","DOIUrl":"https://doi.org/10.1007/s10851-022-01139-2","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45194425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of Morphological Dilation in Max-Plus and Plus-Prod Algebra in Connection with the Fourier Transformation Max-Plus和Plus-Prod代数中形态扩张的性质及傅立叶变换
IF 2 4区 数学 Q1 Mathematics Pub Date : 2023-01-09 DOI: 10.1007/s10851-022-01138-3
Marvin Kahra, M. Breuß
{"title":"Properties of Morphological Dilation in Max-Plus and Plus-Prod Algebra in Connection with the Fourier Transformation","authors":"Marvin Kahra, M. Breuß","doi":"10.1007/s10851-022-01138-3","DOIUrl":"https://doi.org/10.1007/s10851-022-01138-3","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48215838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Guest Editorial JMIV Special Issue SSVM’21 客座编辑JMIV特刊SSVM ' 21
IF 2 4区 数学 Q1 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s10851-023-01140-3
M. Fadili, A. Moataz, Loïc Simon, J. Rabin, Y. Quéau
{"title":"Guest Editorial JMIV Special Issue SSVM’21","authors":"M. Fadili, A. Moataz, Loïc Simon, J. Rabin, Y. Quéau","doi":"10.1007/s10851-023-01140-3","DOIUrl":"https://doi.org/10.1007/s10851-023-01140-3","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44158883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connections Between Numerical Algorithms for PDEs and Neural Networks. PDE 数值算法与神经网络之间的联系。
IF 1.3 4区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 Epub Date: 2022-06-24 DOI: 10.1007/s10851-022-01106-x
Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, Joachim Weickert

We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural architectures. Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks. Besides structural insights, we provide concrete examples and experimental evaluations of the resulting architectures. Using the example of generalised nonlinear diffusion in 1D, we consider explicit schemes, acceleration strategies thereof, implicit schemes, and multigrid approaches. We connect these concepts to residual networks, recurrent neural networks, and U-net architectures. Our findings inspire a symmetric residual network design with provable stability guarantees and justify the effectiveness of skip connections in neural networks from a numerical perspective. Moreover, we present U-net architectures that implement multigrid techniques for learning efficient solutions of partial differential equation models, and motivate uncommon design choices such as trainable nonmonotone activation functions. Experimental evaluations show that the proposed architectures save half of the trainable parameters and can thus outperform standard ones with the same model complexity. Our considerations serve as a basis for explaining the success of popular neural architectures and provide a blueprint for developing new mathematically well-founded neural building blocks.

我们研究偏微分方程(PDEs)数值算法与神经架构之间的众多结构联系。我们的目标是将偏微分方程领域丰富的数学基础移植到神经网络中。除了结构方面的见解外,我们还提供了具体的例子,并对由此产生的架构进行了实验评估。以一维广义非线性扩散为例,我们考虑了显式方案、其加速策略、隐式方案和多网格方法。我们将这些概念与残差网络、递归神经网络和 U-net 架构联系起来。我们的发现启发了具有可证明稳定性保证的对称残差网络设计,并从数值角度证明了神经网络中跳过连接的有效性。此外,我们还提出了 U-net 架构,该架构采用多网格技术来学习偏微分方程模型的高效解,并激发了不常见的设计选择,如可训练的非单调激活函数。实验评估表明,所提出的架构节省了一半的可训练参数,因此在模型复杂度相同的情况下,其性能优于标准架构。我们的考虑为解释流行神经架构的成功奠定了基础,并为开发新的数学基础良好的神经构建模块提供了蓝图。
{"title":"Connections Between Numerical Algorithms for PDEs and Neural Networks.","authors":"Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, Joachim Weickert","doi":"10.1007/s10851-022-01106-x","DOIUrl":"10.1007/s10851-022-01106-x","url":null,"abstract":"<p><p>We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural architectures. Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks. Besides structural insights, we provide concrete examples and experimental evaluations of the resulting architectures. Using the example of generalised nonlinear diffusion in 1D, we consider explicit schemes, acceleration strategies thereof, implicit schemes, and multigrid approaches. We connect these concepts to residual networks, recurrent neural networks, and U-net architectures. Our findings inspire a symmetric residual network design with provable stability guarantees and justify the effectiveness of skip connections in neural networks from a numerical perspective. Moreover, we present U-net architectures that implement multigrid techniques for learning efficient solutions of partial differential equation models, and motivate uncommon design choices such as trainable nonmonotone activation functions. Experimental evaluations show that the proposed architectures save half of the trainable parameters and can thus outperform standard ones with the same model complexity. Our considerations serve as a basis for explaining the success of popular neural architectures and provide a blueprint for developing new mathematically well-founded neural building blocks.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Joint Shape Variation from Multi-Object Complexes 多目标综合体关节形状变化分析
IF 2 4区 数学 Q1 Mathematics Pub Date : 2022-12-17 DOI: 10.1007/s10851-022-01136-5
Zhiyuan Liu, Jörn Schulz, Mohsen Taheri, M. Styner, J. Damon, S. Pizer, J. S. Marron
{"title":"Analysis of Joint Shape Variation from Multi-Object Complexes","authors":"Zhiyuan Liu, Jörn Schulz, Mohsen Taheri, M. Styner, J. Damon, S. Pizer, J. S. Marron","doi":"10.1007/s10851-022-01136-5","DOIUrl":"https://doi.org/10.1007/s10851-022-01136-5","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47270187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Local Binary Patterns of Segments of a Binary Object for Shape Analysis 用于形状分析的二值对象的局部二值模式
IF 2 4区 数学 Q1 Mathematics Pub Date : 2022-11-24 DOI: 10.1007/s10851-022-01130-x
Ratnesh Kumar, Kalyani Mali
{"title":"Local Binary Patterns of Segments of a Binary Object for Shape Analysis","authors":"Ratnesh Kumar, Kalyani Mali","doi":"10.1007/s10851-022-01130-x","DOIUrl":"https://doi.org/10.1007/s10851-022-01130-x","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47978621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On a Variational Problem with a Nonstandard Growth Functional and Its Applications to Image Processing 非标准生长泛函的变分问题及其在图像处理中的应用
IF 2 4区 数学 Q1 Mathematics Pub Date : 2022-11-16 DOI: 10.1007/s10851-022-01131-w
C. D'apice, P. Kogut, O. Kupenko, R. Manzo
{"title":"On a Variational Problem with a Nonstandard Growth Functional and Its Applications to Image Processing","authors":"C. D'apice, P. Kogut, O. Kupenko, R. Manzo","doi":"10.1007/s10851-022-01131-w","DOIUrl":"https://doi.org/10.1007/s10851-022-01131-w","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49075382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Journal of Mathematical Imaging and Vision
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1