首页 > 最新文献

Journal of magnetic resonance最新文献

英文 中文
Selective enhancement of 1H signal from water and oil in porous media at low field with Overhauser DNP 用 Overhauser DNP 在低场条件下选择性增强多孔介质中水和油的 1H 信号
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 DOI: 10.1016/j.jmr.2024.107793
Devin M. Morin , Naser Ansaribaranghar , Benjamin Nicot , Derrick Green , Bruce.J. Balcom
In porous media MR studies, discriminating between oil and water presents a challenge because MR lifetimes are often similar and spectra overlap. Low saturations might suggest an experimental strategy of increasing the static field for increased sensitivity, but susceptibility effects are exacerbated at higher field. Overhauser dynamic nuclear polarization, effective at low static field, was employed with water and oil-soluble nitroxide to selectively enhance water and oil signals. We employ a home-built 2 MHz ceramic magnet to achieve selective enhancement of water and oil, in bulk, and in a rock core. For imaging, we employ a 705 kHz ceramic magnet with a 4 gauss/cm constant gradient configuration to image the hyperpolarized signal. A rock core flooding experiment was undertaken to highlight the advantages of Overhauser enhancement. A simple phase cycling technique may be employed to cancel the thermally polarized 1H signal to isolate the enhanced signal of interest.
在多孔介质磁共振研究中,区分油和水是一项挑战,因为磁共振寿命通常相似且光谱重叠。低饱和度可能建议采用增加静场以提高灵敏度的实验策略,但在较高的静场下,易感性效应会加剧。过豪泽尔动态核偏振在低静态场下有效,我们使用水溶性和油溶性硝基氧化物来选择性地增强水和油信号。我们使用自制的 2 MHz 陶瓷磁铁来选择性地增强岩芯中的水和油。在成像方面,我们采用 705 kHz 陶瓷磁体,以 4 高斯/厘米的恒定梯度配置对超极化信号进行成像。为了突出奥弗霍瑟增强技术的优势,我们进行了岩心充水实验。可以采用简单的相位循环技术来消除热极化 1H 信号,从而分离出感兴趣的增强信号。
{"title":"Selective enhancement of 1H signal from water and oil in porous media at low field with Overhauser DNP","authors":"Devin M. Morin ,&nbsp;Naser Ansaribaranghar ,&nbsp;Benjamin Nicot ,&nbsp;Derrick Green ,&nbsp;Bruce.J. Balcom","doi":"10.1016/j.jmr.2024.107793","DOIUrl":"10.1016/j.jmr.2024.107793","url":null,"abstract":"<div><div>In porous media MR studies, discriminating between oil and water presents a challenge because MR lifetimes are often similar and spectra overlap. Low saturations might suggest an experimental strategy of increasing the static field for increased sensitivity, but susceptibility effects are exacerbated at higher field. Overhauser dynamic nuclear polarization, effective at low static field, was employed with water and oil-soluble nitroxide to selectively enhance water and oil signals. We employ a home-built 2 MHz ceramic magnet to achieve selective enhancement of water and oil, in bulk, and in a rock core. For imaging, we employ a 705 kHz ceramic magnet with a 4 gauss/cm constant gradient configuration to image the hyperpolarized signal. A rock core flooding experiment was undertaken to highlight the advantages of Overhauser enhancement. A simple phase cycling technique may be employed to cancel the thermally polarized <sup>1</sup>H signal to isolate the enhanced signal of interest.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107793"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift prediction in 13C NMR spectroscopy using ensembles of message passing neural networks (MPNNs) 利用信息传递神经网络 (MPNN) 集合预测 13C NMR 光谱中的化学位移
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 DOI: 10.1016/j.jmr.2024.107795
D. Williamson , S. Ponte , I. Iglesias , N. Tonge , C. Cobas , E.K. Kemsley
This study reports a deep learning approach that utilises message passing neural networks (MPNNs) for predicting chemical shifts in 13C NMR spectra of small molecules. MPNNs were trained on two distinct datasets: one with approximately 4000 labelled structures and another with over 40,000. To reduce stochastic variation, an ensemble framework was implemented, which is simple to deploy on multiple nodes of a High-Performance Computing facility.
The results emphasise the critical role of training set size and diversity. While prediction performance was comparable on test sets drawn from each dataset, the ensemble trained on the larger dataset retained its accuracy when these sets were crossed over, and when applied to a further collection of approximately 12,000 previously unseen structures introduced after all development work had been completed. In contrast, the ensemble trained on the smaller dataset showed a notable decline in generalisation ability. This difference is attributed to the greater diversity of atomic environments captured in the larger dataset.
The larger dataset also enabled more robust modelling of various error properties, providing a quantitative foundation for spectral assignment and verification. This was achieved in two ways. First, a clear relationship was observed between prediction errors and the frequency of different node feature vectors in the training data, allowing error estimates to be associated with individual nodes based on their type. These estimates can be used as weights in a modified cityblock distance metric when assigning observed to predicted shifts. Second, the mean absolute prediction error calculated at the structure level is well-fitted by a Gaussian kernel cumulative distribution. This enabled a probabilistic assessment of whether the predicted shifts and assigned observations are consistent with originating from the same molecular structure.
本研究报告了一种利用消息传递神经网络(MPNN)预测小分子 13C NMR 光谱中化学位移的深度学习方法。MPNN 在两个不同的数据集上进行了训练:一个数据集包含约 4000 个标记结构,另一个数据集包含 40,000 多个标记结构。为了减少随机变化,我们实施了一个集合框架,该框架很容易部署在高性能计算设备的多个节点上。虽然从每个数据集抽取的测试集的预测性能相当,但在较大数据集上训练的集合在这些数据集交叉使用时,以及在所有开发工作完成后应用于约 12,000 个以前未见过的结构的进一步集合时,仍保持了其准确性。相比之下,在较小数据集上训练的集合的泛化能力明显下降。这种差异归因于较大数据集中捕捉到的原子环境更加多样化。较大数据集还能对各种误差属性进行更稳健的建模,为光谱分配和验证提供定量基础。这可以通过两种方式实现。首先,在预测误差与训练数据中不同节点特征向量的频率之间发现了明确的关系,从而可以根据节点类型将误差估计值与单个节点联系起来。在将观测到的偏移分配到预测的偏移时,这些估计值可用作修改后的城市街区距离度量的权重。其次,在结构层面计算出的平均绝对预测误差与高斯核累积分布拟合良好。这样就可以从概率上评估预测偏移和分配的观测值是否符合同一分子结构。
{"title":"Chemical shift prediction in 13C NMR spectroscopy using ensembles of message passing neural networks (MPNNs)","authors":"D. Williamson ,&nbsp;S. Ponte ,&nbsp;I. Iglesias ,&nbsp;N. Tonge ,&nbsp;C. Cobas ,&nbsp;E.K. Kemsley","doi":"10.1016/j.jmr.2024.107795","DOIUrl":"10.1016/j.jmr.2024.107795","url":null,"abstract":"<div><div>This study reports a deep learning approach that utilises message passing neural networks (MPNNs) for predicting chemical shifts in <sup>13</sup>C NMR spectra of small molecules. MPNNs were trained on two distinct datasets: one with approximately 4000 labelled structures and another with over 40,000. To reduce stochastic variation, an ensemble framework was implemented, which is simple to deploy on multiple nodes of a High-Performance Computing facility.</div><div>The results emphasise the critical role of training set size and diversity. While prediction performance was comparable on test sets drawn from each dataset, the ensemble trained on the larger dataset retained its accuracy when these sets were crossed over, and when applied to a further collection of approximately 12,000 previously unseen structures introduced after all development work had been completed. In contrast, the ensemble trained on the smaller dataset showed a notable decline in generalisation ability. This difference is attributed to the greater diversity of atomic environments captured in the larger dataset.</div><div>The larger dataset also enabled more robust modelling of various error properties, providing a quantitative foundation for spectral assignment and verification. This was achieved in two ways. First, a clear relationship was observed between prediction errors and the frequency of different node feature vectors in the training data, allowing error estimates to be associated with individual nodes based on their type. These estimates can be used as weights in a modified cityblock distance metric when assigning observed to predicted shifts. Second, the mean absolute prediction error calculated at the structure level is well-fitted by a Gaussian kernel cumulative distribution. This enabled a probabilistic assessment of whether the predicted shifts and assigned observations are consistent with originating from the same molecular structure.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107795"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementing a two-stage, shim field-calibrated superconducting shimming method on a 7 T cryogen-free small animal MRI magnet 在 7 T 无低温小型动物磁共振成像磁体上实施两阶段、垫片场校准超导垫片法。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-01 DOI: 10.1016/j.jmr.2024.107787
Jinhao Liu , Yaohui Wang , Miutian Wang , Wenchen Wang , Gang Yang , Weimin Wang , Qiuliang Wang , Feng Liu
Ultrahigh field systems ( 7 T) can increase the signal-to-noise ratio of magnetic resonance imaging (MRI), improving imaging performance compared to systems with lower fields. However, these enhancements heavily rely on a high B0 magnetic field homogeneity level, which can be achieved through superconducting shimming. This paper presents a novel two-stage superconducting shimming method designed to achieve precise shimming for a 7 T MRI superconducting magnet. In the initial stage, detailed measurements and fittings were conducted to determine the current polarity and the axial or circumferential positions of the shim fields. Subsequently, an optimization strategy was implemented to determine the optimal shim currents with a flexible target field. The second stage involves an iterative process to fine-tune the current of a specific shim coil, identified as having the most significant impact on field homogeneity. The overall fitness of 99.5% underscores the precision in determining the current polarity and position of the shim fields. Significantly, the calibrated shim system substantially improves the peak-to-peak and Root Mean Square Error (RMSE) field homogeneities from 107.42 ppm and 37.00 ppm to 11.12 ppm and 3.26 ppm, respectively, representing improvements of 89.65% and 91.19%. Furthermore, the simulation results of the fine-tuning stage demonstrate additional enhancements in peak-to-peak field homogeneity, to 9.9 ppm by reducing the current of the Z2 shim coil by 51.3 mA. Additionally, the shimmed magnetic field exhibited high time stability, with a maximum variation of only 27 µT observed within 48 h. Thus, the proposed two-stage superconducting shimming framework effectively addresses the challenge of imperfect B0 magnetic fields, enhancing peak-to-peak and RMSE field homogeneity. The stepwise optimized approach also mitigates deviations caused by shim-to-shim coupling, demonstrating its efficacy in achieving precise shimming in ultrahigh-field MRI systems.
与低磁场系统相比,超高磁场系统(≥ 7 T)可提高磁共振成像(MRI)的信噪比,改善成像性能。然而,这些改进在很大程度上依赖于高 B0 磁场均匀性水平,而这可以通过超导垫片来实现。本文介绍了一种新颖的两阶段超导垫片方法,旨在实现 7 T MRI 超导磁体的精确垫片。在初始阶段,进行了详细的测量和装配,以确定电流极性和垫片磁场的轴向或圆周位置。随后,实施了优化策略,以确定具有灵活目标磁场的最佳垫片电流。第二阶段包括一个迭代过程,对特定垫片线圈的电流进行微调,确定其对磁场均匀性的影响最大。总体合格率为 99.5%,凸显了确定电流极性和垫片场位置的精确性。值得注意的是,经过校准的垫片系统极大地改善了峰峰值和均方根误差(RMSE)场均匀性,分别从 107.42 ppm 和 37.00 ppm 降至 11.12 ppm 和 3.26 ppm,即分别改善了 89.65% 和 91.19%。此外,微调阶段的模拟结果表明,通过将 Z2 垫片线圈的电流降低 51.3 mA,峰-峰场均匀性进一步提高到 9.9 ppm。此外,微调后的磁场具有很高的时间稳定性,在 48 小时内观察到的最大变化仅为 27 µT。因此,所提出的两阶段超导微调框架有效地解决了 B0 磁场不完美的难题,提高了峰峰值和均方根值磁场的均匀性。分步优化方法还能减轻垫片间耦合造成的偏差,证明了它在超高场磁共振成像系统中实现精确垫片的功效。
{"title":"Implementing a two-stage, shim field-calibrated superconducting shimming method on a 7 T cryogen-free small animal MRI magnet","authors":"Jinhao Liu ,&nbsp;Yaohui Wang ,&nbsp;Miutian Wang ,&nbsp;Wenchen Wang ,&nbsp;Gang Yang ,&nbsp;Weimin Wang ,&nbsp;Qiuliang Wang ,&nbsp;Feng Liu","doi":"10.1016/j.jmr.2024.107787","DOIUrl":"10.1016/j.jmr.2024.107787","url":null,"abstract":"<div><div>Ultrahigh field systems (<span><math><mo>≥</mo></math></span> 7 T) can increase the signal-to-noise ratio of magnetic resonance imaging (MRI), improving imaging performance compared to systems with lower fields. However, these enhancements heavily rely on a high <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> magnetic field homogeneity level, which can be achieved through superconducting shimming. This paper presents a novel two-stage superconducting shimming method designed to achieve precise shimming for a 7 T MRI superconducting magnet. In the initial stage, detailed measurements and fittings were conducted to determine the current polarity and the axial or circumferential positions of the shim fields. Subsequently, an optimization strategy was implemented to determine the optimal shim currents with a flexible target field. The second stage involves an iterative process to fine-tune the current of a specific shim coil, identified as having the most significant impact on field homogeneity. The overall fitness of 99.5% underscores the precision in determining the current polarity and position of the shim fields. Significantly, the calibrated shim system substantially improves the peak-to-peak and Root Mean Square Error (RMSE) field homogeneities from 107.42 ppm and 37.00 ppm to 11.12 ppm and 3.26 ppm, respectively, representing improvements of 89.65% and 91.19%. Furthermore, the simulation results of the fine-tuning stage demonstrate additional enhancements in peak-to-peak field homogeneity, to 9.9 ppm by reducing the current of the Z2 shim coil by 51.3 mA. Additionally, the shimmed magnetic field exhibited high time stability, with a maximum variation of only 27 <span><math><mstyle><mi>µ</mi><mi>T</mi></mstyle></math></span> observed within 48 h. Thus, the proposed two-stage superconducting shimming framework effectively addresses the challenge of imperfect <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> magnetic fields, enhancing peak-to-peak and RMSE field homogeneity. The stepwise optimized approach also mitigates deviations caused by shim-to-shim coupling, demonstrating its efficacy in achieving precise shimming in ultrahigh-field MRI systems.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107787"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural net analysis of NMR spectra from strongly-coupled spin systems 强耦合自旋系统核磁共振波谱的神经网络分析
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-22 DOI: 10.1016/j.jmr.2024.107792
James H. Prestegard , Geert-Jan Boons , Pradeep Chopra , John Glushka , John H. Grimes Jr. , Bernd Simon
Extracting parameters such as chemical shifts and coupling constants from proton NMR spectra is often a first step in using spectra for compound identification and structure determination. This can become challenging when scalar couplings between protons are comparable in size to chemical shift differences (strongly coupled), as is often the case with low-field (bench top) spectrometers. Here we explore the potential utility of AI methods, in particular neural networks, for extracting parameters from low-field spectra. Rather than seeking large experimental sets of spectra for training a network, we chose quantum mechanical simulation of sets, something that is possible with modern software packages and computer resources. We show that application of a network trained on 2-D J-resolved spectra and applied to a spectrum of iduronic acid, shows some promise, but also meets with some obstacles. We suggest that these may be overcome with improved pulse sequences and more extensive simulations.
从质子 NMR 光谱中提取化学位移和耦合常数等参数通常是利用光谱进行化合物鉴定和结构确定的第一步。当质子间的标量耦合与化学位移差异(强耦合)大小相当时,这可能会变得具有挑战性,低场(台式)光谱仪通常就是这种情况。在此,我们探讨了人工智能方法(尤其是神经网络)在从低场光谱中提取参数方面的潜在用途。我们没有寻求大型实验光谱集来训练网络,而是选择了量子力学模拟光谱集,这在现代软件包和计算机资源条件下是可行的。我们的研究表明,在二维 J 分辨光谱上训练的网络可应用于依度酸的光谱,该网络的应用显示了一些前景,但也遇到了一些障碍。我们建议通过改进脉冲序列和更广泛的模拟来克服这些障碍。
{"title":"Neural net analysis of NMR spectra from strongly-coupled spin systems","authors":"James H. Prestegard ,&nbsp;Geert-Jan Boons ,&nbsp;Pradeep Chopra ,&nbsp;John Glushka ,&nbsp;John H. Grimes Jr. ,&nbsp;Bernd Simon","doi":"10.1016/j.jmr.2024.107792","DOIUrl":"10.1016/j.jmr.2024.107792","url":null,"abstract":"<div><div>Extracting parameters such as chemical shifts and coupling constants from proton NMR spectra is often a first step in using spectra for compound identification and structure determination. This can become challenging when scalar couplings between protons are comparable in size to chemical shift differences (strongly coupled), as is often the case with low-field (bench top) spectrometers. Here we explore the potential utility of AI methods, in particular neural networks, for extracting parameters from low-field spectra. Rather than seeking large experimental sets of spectra for training a network, we chose quantum mechanical simulation of sets, something that is possible with modern software packages and computer resources. We show that application of a network trained on 2-D J-resolved spectra and applied to a spectrum of iduronic acid, shows some promise, but also meets with some obstacles. We suggest that these may be overcome with improved pulse sequences and more extensive simulations.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107792"},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An array of paired folded-end dipoles for whole-brain imaging at 9.4 T 用于 9.4 T 全脑成像的成对折叠端偶极子阵列
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-19 DOI: 10.1016/j.jmr.2024.107791
K.I. Popova , F. Glang , D. Bosch , K. Scheffler , N.I. Avdievich , S.B. Glybovski , G.A. Solomakha

Purpose

To improve transmit B1+ field homogeneity and longitudinal coverage of a human head RF array, we developed a novel eight-element transceiver (TxRx) array using composite elements based on paired folded-end dipoles.

Methods

The developed array consisted of eight pairs of coupled folded-end dipoles. Only one dipole in each pair was driven during transmission, while the other was passively coupled with the active one. The distribution of the transmit B1+ field was numerically optimized by changing the overlap between the dipoles and the value of the reactive lumped element placed in the middle of the passive dipole.

Results

The proposed array of paired folded-end dipoles substantially improved the B1+ homogeneity and longitudinal coverage over the entire brain including the brain stem compared to a single-row folded-end dipole array. The improved whole brain coverage was demonstrated both numerically and experimentally.

Conclusion

As a proof of concept, we developed and characterized both numerically and experimentally a prototype of a single-row eight-element 9.4 T array for human brain imaging consisting of composite array elements based on paired passively-coupled folded-end dipoles. The array improved the transmit magnetic field distribution due to the laterally elongated field pattern created by one active and one passive dipole per channel. As a result, the provided coverage was substantially better than that of an 8-element dipole array consisting of long folded-end dipoles. For the first time, an image of the entire human brain at 9.4 T, covering the brain stem up to the fourth vertebra, was obtained using a simple single row eight-element array.
目的为了改善人体头部射频阵列的发射 B1+ 场均匀性和纵向覆盖范围,我们开发了一种新型八元件收发器(TxRx)阵列,该阵列采用基于成对折叠端偶极子的复合元件。每对偶极子中只有一个在传输过程中被驱动,而另一个则与主动偶极子被动耦合。通过改变偶极子之间的重叠度和置于被动偶极子中间的反应块状元件的值,对发射 B1+ 场的分布进行了数值优化。结果与单排折端偶极子阵列相比,所提出的成对折端偶极子阵列大大提高了 B1+ 的均匀性和对包括脑干在内的整个大脑的纵向覆盖。结论 作为概念验证,我们开发了一种用于人脑成像的单排八元件 9.4 T 阵列原型,并对其进行了数值和实验表征,该阵列由基于成对被动耦合折端偶极子的复合阵元组成。由于每个通道由一个有源偶极子和一个无源偶极子形成横向拉长的磁场模式,该阵列改善了发射磁场分布。因此,其覆盖范围大大优于由长折端偶极子组成的 8 元偶极子阵列。利用一个简单的单排八元件阵列,首次在 9.4 T 下获得了整个人脑的图像,覆盖范围从脑干一直到第四节脊椎骨。
{"title":"An array of paired folded-end dipoles for whole-brain imaging at 9.4 T","authors":"K.I. Popova ,&nbsp;F. Glang ,&nbsp;D. Bosch ,&nbsp;K. Scheffler ,&nbsp;N.I. Avdievich ,&nbsp;S.B. Glybovski ,&nbsp;G.A. Solomakha","doi":"10.1016/j.jmr.2024.107791","DOIUrl":"10.1016/j.jmr.2024.107791","url":null,"abstract":"<div><h3>Purpose</h3><div>To improve transmit B<sub>1</sub><sup>+</sup> field homogeneity and longitudinal coverage of a human head RF array, we developed a novel eight-element transceiver (TxRx) array using composite elements based on paired folded-end dipoles.</div></div><div><h3>Methods</h3><div>The developed array consisted of eight pairs of coupled folded-end dipoles. Only one dipole in each pair was driven during transmission, while the other was passively coupled with the active one. The distribution of the transmit B<sub>1</sub><sup>+</sup> field was numerically optimized by changing the overlap between the dipoles and the value of the reactive lumped element placed in the middle of the passive dipole.</div></div><div><h3>Results</h3><div>The proposed array of paired folded-end dipoles substantially improved the B<sub>1</sub><sup>+</sup> homogeneity and longitudinal coverage over the entire brain including the brain stem compared to a single-row folded-end dipole array. The improved whole brain coverage was demonstrated both numerically and experimentally.</div></div><div><h3>Conclusion</h3><div>As a proof of concept, we developed and characterized both numerically and experimentally a prototype of a single-row eight-element 9.4 T array for human brain imaging consisting of composite array elements based on paired passively-coupled folded-end dipoles. The array improved the transmit magnetic field distribution due to the laterally elongated field pattern created by one active and one passive dipole per channel. As a result, the provided coverage was substantially better than that of an 8-element dipole array consisting of long folded-end dipoles. For the first time, an image of the entire human brain at 9.4 T, covering the brain stem up to the fourth vertebra, was obtained using a simple single row eight-element array.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107791"},"PeriodicalIF":2.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Nutation” of electron spins in biradicals 双拉子中电子自旋的 "突变"。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-18 DOI: 10.1016/j.jmr.2024.107790
Ruslan Zaripov, Ravil Galeev, Kev Salikhov
In this work, the nutation of the spins of unpaired electrons in the nitroxide biradical of bis‑methano[60]fullerene was experimentally studied. Nutation frequencies were found in a wide range of microwave field power. To interpret the obtained results, numerical calculations of the nutation of biradicals were carried out for a set of parameters of the spin–spin interaction of a pair of unpaired electrons and for different values of the Rabi frequency of the microwave field. At comparing numerical results with experimental data, we also used the results of analytical calculations of nutation for some model situations. As a result of the analysis of experimental data on nutation, an estimate of the exchange and dipole–dipole interactions for the studied biradical was obtained. They are consistent with the results obtained from analysis of the shape of the EPR spectrum for a given biradical.
在这项研究中,我们通过实验研究了双甲氧基[60]富勒烯的亚硝基双自由基中未配对电子自旋的突变。研究发现,在很宽的微波场功率范围内,都能找到突变频率。为了解释所获得的结果,针对一对未成对电子的自旋-自旋相互作用的一组参数以及微波场的不同拉比频率值,对双辐射根的突变进行了数值计算。在将数值结果与实验数据进行比较时,我们还使用了对某些模型情况进行的自转分析计算结果。在分析了换向实验数据后,我们得到了所研究双拉子交换和偶极-偶极相互作用的估计值。这些结果与分析特定双拉子的 EPR 光谱形状所得到的结果是一致的。
{"title":"“Nutation” of electron spins in biradicals","authors":"Ruslan Zaripov,&nbsp;Ravil Galeev,&nbsp;Kev Salikhov","doi":"10.1016/j.jmr.2024.107790","DOIUrl":"10.1016/j.jmr.2024.107790","url":null,"abstract":"<div><div>In this work, the nutation of the spins of unpaired electrons in the nitroxide biradical of bis‑methano[60]fullerene was experimentally studied. Nutation frequencies were found in a wide range of microwave field power. To interpret the obtained results, numerical calculations of the nutation of biradicals were carried out for a set of parameters of the spin–spin interaction of a pair of unpaired electrons and for different values of the Rabi frequency of the microwave field. At comparing numerical results with experimental data, we also used the results of analytical calculations of nutation for some model situations. As a result of the analysis of experimental data on nutation, an estimate of the exchange and dipole–dipole interactions for the studied biradical was obtained. They are consistent with the results obtained from analysis of the shape of the EPR spectrum for a given biradical.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107790"},"PeriodicalIF":2.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationalising spin relaxation during slice-selective refocusing pulses 合理解释切片选择性再聚焦脉冲期间的自旋弛豫。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-16 DOI: 10.1016/j.jmr.2024.107789
Howard M. Foster , Runchao Li , Yushi Wang , Laura Castañar , Mathias Nilsson , Ralph W. Adams , Gareth A. Morris
Slice-selective refocusing pulses are powerful building blocks in contemporary magnetic resonance experiments, but their use in quantitative applications is complicated by the site-dependent signal loss they introduce. One source of this attenuation is the spin relaxation that occurs during such pulses, which causes losses that depend on the specific longitudinal and transverse relaxation time constants for a given resonance. This dependence is complicated both by any amplitude shaping of the radiofrequency pulse, and by the presence of the spatial encoding pulsed field gradient. The latter causes the net signal measured to be the weighted sum of signal contributions from a continuous range of offsets from resonance. In general, each offset will make a different contribution to the overall signal, and will be attenuated by a different mixture of longitudinal and transverse relaxation that is dictated by the different trajectories that the nuclear magnetisations take during experiments. Despite this complex behaviour, we present evidence from experiments and numerical simulations showing that in practical experimental applications a relatively simple empirical function can be used to accurately predict relaxational attenuation during slice-selective refocusing pulses. This approach may be of practical use in correcting for relaxational losses in quantitative applications of slice-selective pulse methods such as Zangger–Sterk pure shift NMR.
切片选择性再聚焦脉冲是当代磁共振实验的强大组成部分,但由于其带来的与部位相关的信号损失,使其在定量应用中的使用变得复杂。这种衰减的来源之一是脉冲期间发生的自旋弛豫,其造成的损失取决于特定共振的特定纵向和横向弛豫时间常数。射频脉冲的任何振幅整形以及空间编码脉冲场梯度的存在都会使这种依赖性变得复杂。空间编码脉冲场梯度会导致测量到的净信号是来自共振的连续偏移信号的加权和。一般来说,每个偏移都会对整体信号产生不同的贡献,并会被不同的纵向和横向弛豫混合衰减,而这是由核磁化在实验过程中的不同轨迹决定的。尽管这种行为很复杂,但我们从实验和数值模拟中获得的证据表明,在实际实验应用中,可以使用相对简单的经验函数来准确预测切片选择性再聚焦脉冲过程中的弛豫衰减。在定量应用切片选择脉冲方法(如 Zangger-Sterk 纯移位 NMR)时,这种方法可用于校正弛豫损失。
{"title":"Rationalising spin relaxation during slice-selective refocusing pulses","authors":"Howard M. Foster ,&nbsp;Runchao Li ,&nbsp;Yushi Wang ,&nbsp;Laura Castañar ,&nbsp;Mathias Nilsson ,&nbsp;Ralph W. Adams ,&nbsp;Gareth A. Morris","doi":"10.1016/j.jmr.2024.107789","DOIUrl":"10.1016/j.jmr.2024.107789","url":null,"abstract":"<div><div>Slice-selective refocusing pulses are powerful building blocks in contemporary magnetic resonance experiments, but their use in quantitative applications is complicated by the site-dependent signal loss they introduce. One source of this attenuation is the spin relaxation that occurs during such pulses, which causes losses that depend on the specific longitudinal and transverse relaxation time constants for a given resonance. This dependence is complicated both by any amplitude shaping of the radiofrequency pulse, and by the presence of the spatial encoding pulsed field gradient. The latter causes the net signal measured to be the weighted sum of signal contributions from a continuous range of offsets from resonance. In general, each offset will make a different contribution to the overall signal, and will be attenuated by a different mixture of longitudinal and transverse relaxation that is dictated by the different trajectories that the nuclear magnetisations take during experiments. Despite this complex behaviour, we present evidence from experiments and numerical simulations showing that in practical experimental applications a relatively simple empirical function can be used to accurately predict relaxational attenuation during slice-selective refocusing pulses. This approach may be of practical use in correcting for relaxational losses in quantitative applications of slice-selective pulse methods such as Zangger–Sterk pure shift NMR.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107789"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-volume resonator for L-band DNP-NMR 用于 L 波段 DNP-NMR 的大容量谐振器。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1016/j.jmr.2024.107788
Adam R. Altenhof , Qing Yang , Michal Kern , Shaun G. Newman , Jens Anders , Michael W. Malone
DNP-NMR and EPR experiments that operate at or greater than L-band (i.e., ν0(e) = 1–2 GHz) are typically limited to maximum sample volumes of several hundred µL. These experiments rely on well-known resonator designs for DNP/EPR irradiation such as the loop-gap resonator and Alderman-Grant coil, where their maximum volumes limit further application to imaging experiments and high-throughput screening beyond L-band. Herein, we demonstrate a birdcage (BC) resonator design that can accommodate several mL of sample while operating around 1.5 GHz. The sample volume is maximized by using two identical BC resonators in a stacked configuration. Simulations are used to optimize the BC design and the performance is validated experimentally with liquid-state Overhauser-DNP-NMR experiments. This BC design exploits just the parasitic capacitance of conductive rings and features no fixed tuning capacitors. An enhancement of −77 is achieved on a 10 mM 4-Amino-TEMPO in H2O sample for a 5 mL sample volume. The associated sample heating is minimal due to the low-E-fields generated and the large sample mass with +3.4 K when driving 100 W for several seconds.
在 L 波段或更高波段(即 ν0(e-) = 1-2 GHz)运行的 DNP-NMR 和 EPR 实验通常仅限于几百微升的最大样品量。这些实验依赖于众所周知的 DNP/EPR 辐照谐振器设计,如环隙谐振器和奥尔德曼-格兰特线圈,它们的最大体积限制了成像实验和 L 波段以上高通量筛选的进一步应用。在这里,我们展示了一种鸟笼(BC)谐振器设计,它可以容纳几毫升样品,同时工作频率在 1.5 GHz 左右。通过在堆叠配置中使用两个相同的 BC 谐振器,最大限度地增加了样品体积。模拟用于优化 BC 设计,液态 Overhauser-DNP-NMR 实验验证了其性能。这种 BC 设计只利用了导电环的寄生电容,没有固定的调谐电容。在 5 mL 样品体积下,在 10 mM 4-Amino-TEMPO in H2O 样品上实现了 -77 的增强。由于产生的电场较低,且样品质量较大,在 100 W 的功率下持续数秒后,样品的加热温度为 +3.4 K,因此相关的样品加热温度极低。
{"title":"A high-volume resonator for L-band DNP-NMR","authors":"Adam R. Altenhof ,&nbsp;Qing Yang ,&nbsp;Michal Kern ,&nbsp;Shaun G. Newman ,&nbsp;Jens Anders ,&nbsp;Michael W. Malone","doi":"10.1016/j.jmr.2024.107788","DOIUrl":"10.1016/j.jmr.2024.107788","url":null,"abstract":"<div><div>DNP-NMR and EPR experiments that operate at or greater than L-band (<em>i.e.,</em> ν<sub>0</sub>(e<sup>−</sup>) = 1–2 GHz) are typically limited to maximum sample volumes of several hundred µL. These experiments rely on well-known resonator designs for DNP/EPR irradiation such as the loop-gap resonator and Alderman-Grant coil, where their maximum volumes limit further application to imaging experiments and high-throughput screening beyond L-band. Herein, we demonstrate a birdcage (BC) resonator design that can accommodate several mL of sample while operating around 1.5 GHz. The sample volume is maximized by using two identical BC resonators in a stacked configuration. Simulations are used to optimize the BC design and the performance is validated experimentally with liquid-state Overhauser-DNP-NMR experiments. This BC design exploits just the parasitic capacitance of conductive rings and features no fixed tuning capacitors. An enhancement of −77 is achieved on a 10 mM 4-Amino-TEMPO in H<sub>2</sub>O sample for a 5 mL sample volume. The associated sample heating is minimal due to the low-<em>E</em>-fields generated and the large sample mass with +3.4 K when driving 100 W for several seconds.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107788"},"PeriodicalIF":2.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS 用于多核 MRI 和 MRS 的频率无关双调谐电缆陷阱
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-10 DOI: 10.1016/j.jmr.2024.107786
Yijin Yang , Ming Lu , Xinqiang Yan
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B0 shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of 1H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for 1H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for 1H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
非质子核(X-核)的磁共振成像(MRI)和磁共振波谱分析(MRS)通常需要额外的质子成像来进行解剖学参考和 B0 偏移。因此,存在两个射频系统,需要电缆陷阱来阻断 1H 核和 X 核两种拉莫尔频率下不需要的共模电流。本研究介绍了一种与频率无关的双调谐电缆陷波器,它结合了标准电磁电缆陷波器和浮动电磁陷波器,可在不影响性能的情况下独立调谐高频和低频。研究方法包括理论分析、电磁模拟和台架试验。对两种设计方法进行了评估:用于 1H 核的浮动电缆陷波器和用于 X 核的非浮动电缆陷波器,反之亦然。结果表明,X 核采用浮动电缆陷波器,1H 核采用非浮动电缆陷波器的设计性能优越,在两种频率下都具有很高的共模电流抑制能力。工作台测试证实了这些发现,证明了在各种静态场和 X 核中的有效性。所提出的频率无关双调谐电缆阱为多核 MRI 和 MRS 提供了一种紧凑高效的解决方案,提高了安全性、图像质量和灵活性。
{"title":"Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS","authors":"Yijin Yang ,&nbsp;Ming Lu ,&nbsp;Xinqiang Yan","doi":"10.1016/j.jmr.2024.107786","DOIUrl":"10.1016/j.jmr.2024.107786","url":null,"abstract":"<div><div>Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B<sub>0</sub> shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of <sup>1</sup>H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for <sup>1</sup>H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for <sup>1</sup>H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107786"},"PeriodicalIF":2.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homonuclear J-couplings and heteronuclear structural constraints 同核 J耦合和异核结构约束。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-09 DOI: 10.1016/j.jmr.2024.107785
Edward P. Saliba , Ravi Shankar Palani, Robert G. Griffin
In magic angle spinning (MAS) experiments involving uniformly 13C/15N labeled proteins, 13C–13C and 13C–15N dipolar recoupling experiments are now routinely used to measure direct dipole–dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (<4 Å), the direct couplings dominate the evolution of the spin system, and the 13C–13C and 13C–15N J-couplings (scalar couplings) are ignored. However, for structurally interesting >4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment. This problem is circumvented in cases with well resolved spectra by using frequency-selective dipolar recoupling methods where the effects of J-couplings are refocused. However, for larger molecules with more spectral crowding, the requisite pulse length to achieve selectivity becomes long and leads to unacceptable sensitivity losses during the pulse or the spectral overlap precludes selective excitation. In this paper, we address this problem with two approaches aimed at facilitating higher precision internuclear distance measurements in systems that are not fully resolved. Namely, (1) we describe an approach for high precision measurements of specific J-couplings using the in-phase anti-phase (IPAP) sequence which is integrated into a non-selective dipolar recoupling technique and (2) we utilize the measured J-couplings to implement a double quantum filter experiment capable of providing the resolution necessary for frequency selective dipolar recoupling techniques without resorting to multidimensional spectroscopy. We illustrate these methods using a 7-peptide segment from the amyloidogenic Sup-35p protein, U-13C/15N-GNNQQNY, where we have measured 25 of the 27 possible one bond 13C–13C J-couplings.
在涉及均匀 13C/15N 标记蛋白质的魔角旋光(MAS)实验中,13C-13C 和 13C-15N 偶极再偶联实验现在已被常规用于测量直接偶极-偶极耦合,从而约束距离和扭转角并确定分子结构。当距离较短时(13C-13C 和 13C-15N J耦合(标量耦合)被忽略。然而,对于具有结构意义的大于 4 Å 的距离,偶极耦合和 J 耦合的量级通常相当,为了优化实验精度,J 的变化必须包括在内。在光谱解析度较高的情况下,可以通过使用频率选择性偶极再偶联方法来规避这一问题,在这种方法中,J 偶联的影响被重新聚焦。然而,对于具有更多光谱拥挤的较大分子,实现选择性所需的脉冲长度变得很长,导致脉冲期间出现不可接受的灵敏度损失,或者光谱重叠排除了选择性激发。在本文中,我们通过两种方法来解决这一问题,旨在促进在未完全解析的系统中进行更高精度的核间距测量。即:(1) 我们描述了一种利用同相反相(IPAP)序列高精度测量特定 J 偶合的方法,该方法被集成到非选择性偶极再耦合技术中;(2) 我们利用测量到的 J 偶合来实施双量子滤波器实验,该实验能够提供频率选择性偶极再耦合技术所需的分辨率,而无需诉诸多维光谱学。我们使用淀粉样蛋白 Sup-35p 蛋白的一个 7 肽段 U-13C/15N-GNNQQNY 来说明这些方法,我们测量了 27 个可能的单键 13C-13C J 耦合中的 25 个。
{"title":"Homonuclear J-couplings and heteronuclear structural constraints","authors":"Edward P. Saliba ,&nbsp;Ravi Shankar Palani,&nbsp;Robert G. Griffin","doi":"10.1016/j.jmr.2024.107785","DOIUrl":"10.1016/j.jmr.2024.107785","url":null,"abstract":"<div><div>In magic angle spinning (MAS) experiments involving uniformly <sup>13</sup>C/<sup>15</sup>N labeled proteins, <sup>13</sup>C–<sup>13</sup>C and <sup>13</sup>C–<sup>15</sup>N dipolar recoupling experiments are now routinely used to measure direct dipole–dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (&lt;4 Å), the direct couplings dominate the evolution of the spin system, and the <sup>13</sup>C–<sup>13</sup>C and <sup>13</sup>C–<sup>15</sup>N J-couplings (scalar couplings) are ignored. However, for structurally interesting &gt;4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment. This problem is circumvented in cases with well resolved spectra by using frequency-selective dipolar recoupling methods where the effects of J-couplings are refocused. However, for larger molecules with more spectral crowding, the requisite pulse length to achieve selectivity becomes long and leads to unacceptable sensitivity losses during the pulse or the spectral overlap precludes selective excitation. In this paper, we address this problem with two approaches aimed at facilitating higher precision internuclear distance measurements in systems that are not fully resolved. Namely, (1) we describe an approach for high precision measurements of specific J-couplings using the in-phase anti-phase (IPAP) sequence which is integrated into a non-selective dipolar recoupling technique and (2) we utilize the measured J-couplings to implement a double quantum filter experiment capable of providing the resolution necessary for frequency selective dipolar recoupling techniques without resorting to multidimensional spectroscopy. We illustrate these methods using a 7-peptide segment from the amyloidogenic Sup-35p protein, U-<sup>13</sup>C/<sup>15</sup>N-GNNQQNY, where we have measured 25 of the 27 possible one bond <sup>13</sup>C–<sup>13</sup>C J-couplings.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107785"},"PeriodicalIF":2.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1