首页 > 最新文献

Journal of magnetic resonance最新文献

英文 中文
Comparison of methods for the NMR measurement of motionally averaged dipolar couplings 核磁共振测量运动平均偶极耦合的方法比较
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-09 DOI: 10.1016/j.jmr.2024.107710
Scott A. Southern , Frédéric A. Perras

Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods’ strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where 1H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C–H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of 1H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.

运动平均偶极耦合是了解催化剂、聚合物和生物分子复杂动态的重要工具。虽然有大量固态 NMR 脉冲序列可用于测量它们,但要衡量这些方法的优缺点却很困难。特别是在天然丰度样品中,1H 同核偶极耦合非常重要,而且出于灵敏度的考虑,可能需要使用大型 MAS 转子,因此还没有对这些方法的性能进行过全面比较。在这项工作中,我们以 L-丙氨酸(L-Ala)和 N-甲酰基-L-蛋氨酰-L-亮氨酰-L-苯丙氨酸(fMLF)三肽为模型系统,直接比较了在天然丰度样品中测量 C-H 偶极耦合的一些常用方法。我们从准确性、分辨率、灵敏度和易用性等方面对它们的性能进行了评估。我们发现,尽管存在 1H 同核偶极相互作用,但除 REDOR 外,所有方法都能得出流动和静态分子的合理偶极耦合强度。在这些方法中,PDLF 的工作流程最便捷,精确度最高,但灵敏度较低。在低灵敏度情况下,MAS-PISEMA 和 DIPSHIFT 似乎是更好的选择。
{"title":"Comparison of methods for the NMR measurement of motionally averaged dipolar couplings","authors":"Scott A. Southern ,&nbsp;Frédéric A. Perras","doi":"10.1016/j.jmr.2024.107710","DOIUrl":"10.1016/j.jmr.2024.107710","url":null,"abstract":"<div><p>Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods’ strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where <sup>1</sup>H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C–H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the <em>N</em>-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of <sup>1</sup>H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"364 ","pages":"Article 107710"},"PeriodicalIF":2.2,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141394083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAS NMR experiments of corynebacterial cell walls: Complementary 1H- and CPMAS CryoProbe-enhanced 13C-detected experiments 球菌细胞壁的 MAS NMR 实验:1H 和 CPMAS CryoProbe 增强 13C 检测实验的互补性
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-06 DOI: 10.1016/j.jmr.2024.107708
Alicia Vallet , Isabel Ayala , Barbara Perrone , Alia Hassan , Jean-Pierre Simorre , Catherine Bougault , Paul Schanda

Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear 13C13C and heteronuclear 1H15N, 1H13C and 15N13C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3–4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of 1H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.

细菌细胞壁是千亿吨级的大型交联聚合物,其运动振幅范围很广,既有相当坚硬的部分,也有高度柔韧的部分。魔角旋转 NMR 是获取完整细胞壁原子级信息的有力方法。在此,我们研究了不同同核 13C13C 和异核 1H15N、1H13C 和 15N13C 相关实验的灵敏度和信息含量。我们证明,与室温探针相比,CPMAS CryoProbe 的信噪比提高了约 8 倍,或单位质量灵敏度提高了约 3-4 倍。灵敏度提高后,即使是完整的细菌也能获得高分辨率光谱。此外,我们还比较了在 100 kHz 与 55 kHz 下获得的 1H MAS 实验的分辨率和灵敏度。我们的研究为选择提取细胞壁样品原子级细节的实验提供了有用的提示。
{"title":"MAS NMR experiments of corynebacterial cell walls: Complementary 1H- and CPMAS CryoProbe-enhanced 13C-detected experiments","authors":"Alicia Vallet ,&nbsp;Isabel Ayala ,&nbsp;Barbara Perrone ,&nbsp;Alia Hassan ,&nbsp;Jean-Pierre Simorre ,&nbsp;Catherine Bougault ,&nbsp;Paul Schanda","doi":"10.1016/j.jmr.2024.107708","DOIUrl":"10.1016/j.jmr.2024.107708","url":null,"abstract":"<div><p>Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear <sup>13</sup>C<img><sup>13</sup>C and heteronuclear <sup>1</sup>H<img><sup>15</sup>N, <sup>1</sup>H<img><sup>13</sup>C and <sup>15</sup>N<img><sup>13</sup>C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3–4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of <sup>1</sup>H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"364 ","pages":"Article 107708"},"PeriodicalIF":2.2,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000922/pdfft?md5=80a76c4050d9dc251a1f625e0f15c7c5&pid=1-s2.0-S1090780724000922-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions 多核 PFGSTE NMR 对 39K、23Na、7Li 和 1H 特定活化能在亚硝酸碱溶液中扩散的描述
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-03 DOI: 10.1016/j.jmr.2024.107707
Trent R. Graham , Ashley R. Kennedy , Robert G. Felsted , Roberto A. Colina-Ruiz , Emily T. Nienhuis , Jacob G. Reynolds , Carolyn I. Pearce

While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.

脉冲场梯度刺激回波核磁共振(PFGSTE NMR)光谱法已广泛应用于量化许多 NMR 活性核的自扩散性,但将这种技术扩展到具有不利 NMR 特性的不常见核仍是一个活跃的研究领域。钾-39(39K)是一个典型的 NMR 核,表现出不利的回旋磁比和极低的拉莫尔频率。尽管存在这些不利特性,这项工作仍证明了在浓亚硝酸钾水溶液中进行 39K PFGSTE NMR 实验是可行的。结果分析表明,当原子核的自旋-晶格弛豫系数和自旋-自旋弛豫系数分别为 60-100 毫秒和 50-100 毫秒时,39K NMR 扩散测量是可行的。39K 的扩散性遵循阿伦尼乌斯行为,对等摩尔亚硝酸钠和亚硝酸锂溶液进行 23Na、7Li 和 1H PFGSTE NMR 比较研究后,发现水合焓与阳离子和水的自扩散活化能之间存在相关性。实现 39K PFGSTE NMR 光谱的可行性对能源科学具有广泛影响,因为钾是储能材料和其他应用中常见的碱元素。
{"title":"Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions","authors":"Trent R. Graham ,&nbsp;Ashley R. Kennedy ,&nbsp;Robert G. Felsted ,&nbsp;Roberto A. Colina-Ruiz ,&nbsp;Emily T. Nienhuis ,&nbsp;Jacob G. Reynolds ,&nbsp;Carolyn I. Pearce","doi":"10.1016/j.jmr.2024.107707","DOIUrl":"10.1016/j.jmr.2024.107707","url":null,"abstract":"<div><p>While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (<sup>39</sup>K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that <sup>39</sup>K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that <sup>39</sup>K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of <sup>39</sup>K followed Arrhenius behavior, and comparative <sup>23</sup>Na, <sup>7</sup>Li, and <sup>1</sup>H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of <sup>39</sup>K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"364 ","pages":"Article 107707"},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with ‘high’ B1 fields 用 "高 "B1 场进行 CEST 实验,提高报告慢动力学交换参数的准确性
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-01 DOI: 10.1016/j.jmr.2024.107699
Nihar Pradeep Khandave , D. Flemming Hansen , Pramodh Vallurupalli

Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and ‘invisible’ minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate B1 field strengths during the saturation period. Typically, a pair of B1 fields with ω1 (=2πB1) values around the exchange rate kex are chosen. Here we show that the transverse relaxation rate of the minor state resonance (R2,B) also plays a crucial role in determining the B1 fields that lead to the most informative datasets. Using K=kexkex+R2,B12 ≥ kex, to guide the choice of B1, instead of kex, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher B1 fields, guided by K, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with kex ∼ 11 s−1 and ∼ 72 s−1, respectively. In both cases analysis of CEST datasets recorded using B1 field values guided by kex lead to imprecise exchange parameters, whereas using B1 values guided by K resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide 15N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.

在过去十年中,化学交换饱和转移(CEST)核磁共振方法已成为表征发生在可见主态和 "不可见 "次态之间的生物分子构象动态的强大工具。CEST 实验能否检测到这些次态并提供精确的交换参数,取决于饱和期间是否使用了适当的 B1 场强。通常,我们会选择一对在交换率 kex 附近具有 ω1 (=2πB1) 值的 B1 场。在这里,我们将展示次态共振(R2,B)的横向弛豫率在确定 B1 场以获得信息量最大的数据集方面也起着至关重要的作用。使用 K=kexkex+R2,B12 ≥ kex 来指导 B1 的选择,而不是 kex,可以得到更精确的交换参数数据。通过研究 71 个残基 FF 结构域的两个突变体(kex 分别为 11 s-1 和 72 s-1)的构象交换,证明了在 K 的指导下需要更高的 B1 场。在这两种情况下,使用以 kex 为指导的 B1 场值对记录的 CEST 数据集进行分析都会导致不精确的交换参数,而使用以 K 为指导的 B1 值则会导致精确的特定位点交换参数。在使用 CEST 研究具有较大固有弛豫速率的位点的缓慢过程时,包括中小型蛋白质中的羰基位点、大型蛋白质中的酰胺 15N 位点,以及当次要态之间的交换导致次要态倾角变宽时,本文提出的结论将非常有价值。
{"title":"Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with ‘high’ B1 fields","authors":"Nihar Pradeep Khandave ,&nbsp;D. Flemming Hansen ,&nbsp;Pramodh Vallurupalli","doi":"10.1016/j.jmr.2024.107699","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107699","url":null,"abstract":"<div><p>Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and ‘invisible’ minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate <em>B</em><sub>1</sub> field strengths during the saturation period. Typically, a pair of <em>B</em><sub>1</sub> fields with <span><math><msub><mi>ω</mi><mn>1</mn></msub></math></span> (=<span><math><msub><mrow><mn>2</mn><mi>π</mi><mi>B</mi></mrow><mn>1</mn></msub></math></span>) values around the exchange rate <em>k</em><sub>ex</sub> are chosen. Here we show that the transverse relaxation rate of the minor state resonance (<span><math><msub><mi>R</mi><mrow><mn>2</mn><mo>,</mo><mi>B</mi></mrow></msub></math></span>) also plays a crucial role in determining the <em>B</em><sub>1</sub> fields that lead to the most informative datasets. Using <span><math><mrow><mi>K</mi><mo>=</mo><msup><mrow><mfenced><mrow><msub><mi>k</mi><mrow><mi>ex</mi></mrow></msub><mfenced><mrow><msub><mi>k</mi><mrow><mi>ex</mi></mrow></msub><mo>+</mo><msub><mi>R</mi><mrow><mn>2</mn><mo>,</mo><mi>B</mi></mrow></msub></mrow></mfenced></mrow></mfenced></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></math></span> ≥ <em>k</em><sub>ex</sub>, to guide the choice of <em>B</em><sub>1</sub>, instead of <em>k</em><sub>ex</sub>, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher <em>B</em><sub>1</sub> fields, guided by <span><math><mi>K</mi></math></span>, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with <span><math><msub><mi>k</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub></math></span> ∼ 11 s<sup>−1</sup> and ∼ 72 s<sup>−1</sup>, respectively. In both cases analysis of CEST datasets recorded using <em>B</em><sub>1</sub> field values guided by <span><math><msub><mi>k</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub></math></span> lead to imprecise exchange parameters, whereas using <em>B</em><sub>1</sub> values guided by <span><math><mi>K</mi></math></span> resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide <sup>15</sup>N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107699"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000831/pdfft?md5=1e8a4ef6faf55a2fa3ee506171f23eb9&pid=1-s2.0-S1090780724000831-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipative dynamics of multiple-quantum NMR coherences in two-spin systems 双自旋系统中多量子 NMR 相干的耗散动力学。
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-01 DOI: 10.1016/j.jmr.2024.107706
Edward B. Fel’dman, Elena I. Kuznetsova, Ksenia V. Panicheva, Sergey G. Vasil’ev, Alexander I. Zenchuk

Multiple-quantum (MQ) NMR experiments were performed at a special orientation of a hambergite (Be2BO3OH) single crystal, which consists of alternating zigzag proton chains. At the chosen orientation, one of the dipolar coupling constants in the chain becomes zero and the system becomes a set of well-isolated dipolar coupled spin pairs. The relaxation of the spin pairs in the MQ NMR experiment was studied on the basis of the Lindblad equation. Fermi’s golden rule was used to investigate the relaxation mechanism. The agreement of the calculated relaxation time with the experimental value (125 μs) suggests that the dipole–dipole interactions with protons surrounding the pair are responsible for the relaxation of MQ coherences.

多量子(MQ)核磁共振实验是在由交替之字形质子链组成的晗锰矿(Be2BO3OH)单晶体的一个特殊取向上进行的。在所选取向上,质子链中的一个偶极耦合常数变为零,系统成为一组隔离良好的偶极耦合自旋对。MQ NMR 实验中自旋对的弛豫是根据林德布拉德方程进行研究的。费米黄金法则被用来研究弛豫机制。计算出的弛豫时间与实验值(125 μs)一致,表明自旋对周围质子的偶极-偶极相互作用是 MQ 相干弛豫的原因。
{"title":"Dissipative dynamics of multiple-quantum NMR coherences in two-spin systems","authors":"Edward B. Fel’dman,&nbsp;Elena I. Kuznetsova,&nbsp;Ksenia V. Panicheva,&nbsp;Sergey G. Vasil’ev,&nbsp;Alexander I. Zenchuk","doi":"10.1016/j.jmr.2024.107706","DOIUrl":"10.1016/j.jmr.2024.107706","url":null,"abstract":"<div><p>Multiple-quantum (MQ) NMR experiments were performed at a special orientation of a hambergite (Be<sub>2</sub>BO<sub>3</sub>OH) single crystal, which consists of alternating zigzag proton chains. At the chosen orientation, one of the dipolar coupling constants in the chain becomes zero and the system becomes a set of well-isolated dipolar coupled spin pairs. The relaxation of the spin pairs in the MQ NMR experiment was studied on the basis of the Lindblad equation. Fermi’s golden rule was used to investigate the relaxation mechanism. The agreement of the calculated relaxation time with the experimental value (125 μs) suggests that the dipole–dipole interactions with protons surrounding the pair are responsible for the relaxation of MQ coherences.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107706"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking down walls: Continuous potential models for internal motions in NMR spin relaxation 打破围墙核磁共振自旋弛豫中内部运动的连续势模型
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-22 DOI: 10.1016/j.jmr.2024.107705
Arthur G. Palmer III

Simple physical models for restricted diffusion in a potential, which provide important insights for NMR spin relaxation, usually are based on free diffusion within rigid boundaries or diffusion in relatively simple continuous potential energy surfaces. The diffusion-in-a-cone model is an example of the former and diffusion in an N-fold cosine potential is an example of the latter. The present work models restricted diffusion for arbitrary potential energy functions on the surface of a cone or a sphere, by expanding the potentials in Fourier or spherical harmonic series, respectively. The results exhibit simple relationships between generalized order parameters and effective correlation times, critical for analysis of experimental spin relaxation data, and illustrate the transition from diffusive-like to jump-like behavior in multi-well potentials.

势能中受限扩散的简单物理模型通常基于刚性边界内的自由扩散或相对简单的连续势能面中的扩散,这些模型为核磁共振自旋弛豫提供了重要见解。锥形扩散模型就是前者的一个例子,而 N 倍余弦势中的扩散则是后者的一个例子。本研究通过分别以傅里叶或球面谐波数列展开势能,为圆锥或球面上任意势能函数的受限扩散建立模型。结果显示了广义阶次参数和有效相关时间之间的简单关系,这对分析实验自旋弛豫数据至关重要,并说明了多孔势中从类似扩散行为到类似跃迁行为的过渡。
{"title":"Breaking down walls: Continuous potential models for internal motions in NMR spin relaxation","authors":"Arthur G. Palmer III","doi":"10.1016/j.jmr.2024.107705","DOIUrl":"10.1016/j.jmr.2024.107705","url":null,"abstract":"<div><p>Simple physical models for restricted diffusion in a potential, which provide important insights for NMR spin relaxation, usually are based on free diffusion within rigid boundaries or diffusion in relatively simple continuous potential energy surfaces. The diffusion-in-a-cone model is an example of the former and diffusion in an <span><math><mi>N</mi></math></span>-fold cosine potential is an example of the latter. The present work models restricted diffusion for arbitrary potential energy functions on the surface of a cone or a sphere, by expanding the potentials in Fourier or spherical harmonic series, respectively. The results exhibit simple relationships between generalized order parameters and effective correlation times, critical for analysis of experimental spin relaxation data, and illustrate the transition from diffusive-like to jump-like behavior in multi-well potentials.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107705"},"PeriodicalIF":2.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validating the 15N-1H HSQC-ROESY experiment for detecting 1HN exchange broadening in proteated proteins 验证 15N-1H HSQC-ROESY 实验在检测蛋白化蛋白质中的 1HN 交换展宽效果
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-21 DOI: 10.1016/j.jmr.2024.107676
Erik R.P. Zuiderweg

It is advantageous to investigate milli-to-micro-second conformational exchange data contained in the solution NMR protein relaxation data other than 15N nuclei. Not only does one search under another lamp post, one also looks at dynamics at other time scales. The HSQC-ROESY 1HN relaxation dispersion experiment for amide protons as introduced by Ishima, et al (1998). J. Am. Soc. 120, 1053410542, is such an experiment, but has by the authors been advised to only be used for perdeuterated proteins to avoid complication with the 1H–1H multiple-spin effects. This is regretful, since not all proteins can be perdeuterated.

Here we analyze in detail the 1HN relaxation terms for this experiment for a fully proteated protein. Indeed, the 1HN relaxation theory is in this case complex and includes dipolar-dipolar relaxation interference and TOCSY transfers. With simulate both of these effects and show that the interference can be exploited for detecting exchange broadening. The TOCSY effect is shown to minor, and when it is not, a solution is provided. We apply the HSQC-ROESY experiment, with a small modification to suppress ROESY crosspeaks, to a 7 kDa GB1 protein that is just 15N and 13C labeled. At 10 °C we cannot detect any conformational exchange broadening: the 1HN R2 relaxation rates with 1.357 kHz spinlock field not larger than those recorded with a 12.136 kHz spinlock field. This means that there is no exchange broadening that can be differentially suppressed with the applied fields. Either there is no broadening, or the broadening is effectively suppressed by all fields, or the broadening cannot be suppressed by either of the fields. While initially this seems to be a disappointing result, we feel that this work establishes that the HSQC-ROESY experiment is very robust. It can indeed be utilized for proteated proteins upto about 30 kDa. This could be opening the study the milli-microsecond conformational dynamics as reported by 1HN exchange broadening for many more proteins.

研究溶液 NMR 蛋白质弛豫数据中包含的 15N 核以外的毫微秒构象交换数据具有优势。我们不仅可以在另一个灯柱下进行搜索,还可以研究其他时间尺度的动力学。Ishima 等人(1998 年)介绍了针对酰胺质子的 HSQC-ROESY 1HN 松弛弥散实验。J. Am. Soc.120, 10534-10542, 就是这样一种实验,但作者建议只用于氚化蛋白质,以避免 1H-1H 多自旋效应的复杂性。在此,我们详细分析了该实验中完全蛋白化蛋白质的 1HN 松弛项。事实上,这种情况下的 1HN 松弛理论非常复杂,包括双极-双极松弛干扰和 TOCSY 转移。我们模拟了这两种效应,并证明可以利用干扰来检测交换展宽。TOCSY 效应被证明是次要的,而当它不重要时,则提供了一种解决方案。我们将 HSQC-ROESY 实验应用于 7 kDa GB1 蛋白质,该蛋白质仅标记了 15N 和 13C。在 10 °C 时,我们无法检测到任何构象交换展宽:1.357 kHz 自旋锁场下的 1HN R2 弛豫速率并不比 12.136 kHz 自旋锁场下记录的速率大。这意味着不存在可通过应用磁场进行不同抑制的交换展宽。要么没有增宽,要么所有磁场都能有效抑制增宽,要么任一磁场都无法抑制增宽。虽然最初的结果似乎令人失望,但我们认为这项工作证明了 HSQC-ROESY 实验是非常可靠的。它确实可以用于 30 kDa 以下的蛋白化蛋白质。这将有助于研究更多蛋白质的毫微秒构象动态,正如 1HN 交换扩增所报告的那样。
{"title":"Validating the 15N-1H HSQC-ROESY experiment for detecting 1HN exchange broadening in proteated proteins","authors":"Erik R.P. Zuiderweg","doi":"10.1016/j.jmr.2024.107676","DOIUrl":"10.1016/j.jmr.2024.107676","url":null,"abstract":"<div><p>It is advantageous to investigate milli-to-micro-second conformational exchange data contained in the solution NMR protein relaxation data other than <sup>15</sup>N nuclei. Not only does one search under another lamp post, one also looks at dynamics at other time scales. The HSQC-ROESY <sup>1</sup>HN relaxation dispersion experiment for amide protons as introduced by <em>Ishima, et al (1998). J. Am. Soc. 120, 10534</em>–<em>10542,</em> is such an experiment, but has by the authors been advised to only be used for perdeuterated proteins to avoid complication with the <sup>1</sup>H–<sup>1</sup>H multiple-spin effects. This is regretful, since not all proteins can be perdeuterated.</p><p>Here we analyze in detail the <sup>1</sup>HN relaxation terms for this experiment for a fully proteated protein. Indeed, the <sup>1</sup>HN relaxation theory is in this case complex and includes dipolar-dipolar relaxation interference and TOCSY transfers. With simulate both of these effects and show that the interference can be exploited for detecting exchange broadening. The TOCSY effect is shown to minor, and when it is not, a solution is provided. We apply the HSQC-ROESY experiment, with a small modification to suppress ROESY crosspeaks, to a 7 kDa GB1 protein that is just <sup>15</sup>N and <sup>13</sup>C labeled. At 10 °C we cannot detect any conformational exchange broadening: the <sup>1</sup>HN R<sub>2</sub> relaxation rates with 1.357 kHz spinlock field not larger than those recorded with a 12.136 kHz spinlock field. This means that there is no exchange broadening that can be differentially suppressed with the applied fields. Either there is no broadening, or the broadening is effectively suppressed by all fields, or the broadening cannot be suppressed by either of the fields. While initially this seems to be a disappointing result, we feel that this work establishes that the HSQC-ROESY experiment is very robust. It can indeed be utilized for proteated proteins upto about 30 kDa. This could be opening the study the milli-microsecond conformational dynamics as reported by <sup>1</sup>HN exchange broadening for many more proteins.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107676"},"PeriodicalIF":2.2,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Susceptibility Modeling of Magic-Angle Spinning Modules for Part Per Billion Scale Field Homogeneity 十亿分之一尺度磁场均匀性的魔角旋转模块磁感应强度建模
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-20 DOI: 10.1016/j.jmr.2024.107704
Jasmin Schönzart , Ruixian Han , Thomas Gennett , Chad M. Rienstra , John A. Stringer

Magic-angle spinning (MAS) solid-state NMR methods are crucial in many areas of biology and materials science. Conventional probe designs have often been specified with 0.1 part per million (ppm) or 100 part per billion (ppb) magnetic field resolution, which is a limitation for many modern scientific applications. Here we describe a novel 5-mm MAS module design that significantly improves the linewidth and line shape for solid samples by an improved understanding of the magnetic susceptibility of probe materials and geometrical symmetry considerations, optimized to minimize the overall perturbation to the applied magnetic field (B0). The improved spinning module requires only first and second order shimming adjustments to achieve a sub-Hz resolution of 13C resonances of adamantane at 150 MHz Larmor frequency (14.1 Tesla magnetic field). Minimal use of third and higher order shims improves experimental reproducibility upon sample changes and the exact placement within the magnet. Furthermore, the shimming procedure is faster, and the required gradients smaller, thus minimizing thermal drift of the room temperature (RT) shims. We demonstrate these results with direct polarization (Bloch decay) and cross polarization experiments on adamantane over a range of sample geometries and with multiple superconducting magnet systems. For a direct polarization experiment utilizing the entire active sample volume of a 5-mm rotor (90 µl), we achieved full width at half maximum (FWHM) of 0.76 Hz (5 ppb) and baseline resolved the 13C satellite peaks for adamantane as a consequent of the 7.31 Hz (59 ppb) width at 2% intensity. We expect these approaches to be increasingly pivotal for high-resolution solid-state NMR spectroscopy at and above 1 GHz 1H frequencies.

魔角旋转(MAS)固态核磁共振方法在生物学和材料科学的许多领域都至关重要。传统探针设计的磁场分辨率通常为百万分之 0.1 (ppm) 或十亿分之 100 (ppb),这对于许多现代科学应用来说是一种限制。在这里,我们描述了一种新型 5 毫米 MAS 模块设计,它通过对探针材料磁感应强度和几何对称性考虑的深入理解,显著改善了固体样品的线宽和线形,并进行了优化,以最大限度地减少对应用磁场 (B0) 的整体扰动。改进后的旋转模块只需进行一阶和二阶垫片调整,就能在 150 MHz 拉莫尔频率(14.1 特斯拉磁场)下实现金刚烷 13C 共振的亚赫兹分辨率。尽量少使用三阶和更高阶的垫片,提高了样品更换和在磁体内精确放置时的实验可重复性。此外,垫片程序更快,所需的梯度更小,从而最大限度地减少了室温(RT)垫片的热漂移。我们利用多种样品几何形状和多种超导磁体系统对金刚烷进行了直接极化(布洛赫衰变)和交叉极化实验,证明了这些结果。在利用 5 毫米转子(90 微升)的整个有效样品体积进行的直接偏振实验中,我们实现了 0.76 Hz(5 ppb)的半最大值全宽(FWHM),并在 2% 强度下实现了 7.31 Hz(59 ppb)的金刚烷 13C 卫星峰的基线分辨。我们期待这些方法在 1 GHz 及以上 1H 频率的高分辨率固态 NMR 光谱中发挥越来越重要的作用。
{"title":"Magnetic Susceptibility Modeling of Magic-Angle Spinning Modules for Part Per Billion Scale Field Homogeneity","authors":"Jasmin Schönzart ,&nbsp;Ruixian Han ,&nbsp;Thomas Gennett ,&nbsp;Chad M. Rienstra ,&nbsp;John A. Stringer","doi":"10.1016/j.jmr.2024.107704","DOIUrl":"10.1016/j.jmr.2024.107704","url":null,"abstract":"<div><p>Magic-angle spinning (MAS) solid-state NMR methods are crucial in many areas of biology and materials science. Conventional probe designs have often been specified with 0.1 part per million (ppm) or 100 part per billion (ppb) magnetic field resolution, which is a limitation for many modern scientific applications. Here we describe a novel 5-mm MAS module design that significantly improves the linewidth and line shape for solid samples by an improved understanding of the magnetic susceptibility of probe materials and geometrical symmetry considerations, optimized to minimize the overall perturbation to the applied magnetic field (<em>B<sub>0</sub></em>). The improved spinning module requires only first and second order shimming adjustments to achieve a sub-Hz resolution of <sup>13</sup>C resonances of adamantane at 150 MHz Larmor frequency (14.1<!--> <!-->Tesla magnetic field). Minimal use of third and higher order shims improves experimental reproducibility upon sample changes and the exact placement within the magnet. Furthermore, the shimming procedure is faster, and the required gradients smaller, thus minimizing thermal drift of the room temperature (RT) shims. We demonstrate these results with direct polarization (Bloch decay) and cross polarization experiments on adamantane over a range of sample geometries and with multiple superconducting magnet systems. For a direct polarization experiment utilizing the entire active sample volume of a 5-mm rotor (90 µl), we achieved full width at half maximum (FWHM) of 0.76 Hz (5 ppb) and baseline resolved the <sup>13</sup>C satellite peaks for adamantane as a consequent of the 7.31 Hz (59 ppb) width at 2% intensity. We expect these approaches to be increasingly pivotal for high-resolution solid-state NMR spectroscopy at and above 1 GHz <sup>1</sup>H frequencies.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"364 ","pages":"Article 107704"},"PeriodicalIF":2.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing of ferromagnetic passive shims for field shaping in magnetic resonance imaging 用于磁共振成像场塑形的铁磁无源垫片的 3D 打印技术
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-18 DOI: 10.1016/j.jmr.2024.107702
Hanne Vanduffel , Quentin Goudard , An Vanduffel , Sergey Basov , Margriet J. Van Bael , Cesar Parra-Cabrera , Willy Gsell , Rodrigo Oliveira-Silva , Aleksander Matavz , Wim Vanduffel , Uwe Himmelreich , Dimitrios Sakellariou , Rob Ameloot

Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink. This approach grants complete control of the magnitude of the magnetic moment within the passive shim enabling tailored corrections of B0 field inhomogeneities. By optimizing the magnetic field distribution using linear programming and an in-house written Computer-Aided Design (CAD) generation software, we printed shims with promising results in generating low spherical harmonic corrections. Experimental evaluations demonstrate feasibility of these 3D printed passive shims to induce target magnetic fields corresponding to second-order spherical harmonic, as evidenced by acquired B0 maps. The electrically insulating properties of the printed shims eliminate the risk of eddy currents and heating, thus ensuring safety. The dimensional fabrication accuracy of the printed shims surpasses previous methods, enabling more precise and localized correction of subject-specific inhomogeneities. The findings highlight the potential of binder-jetted 3D printed passive shims in MRI shimming as a versatile and efficient solution for fabricating passive shims, with the potential to enhance the quality of MRI imaging while also being applicable to other types of Magnetic Resonance systems.

磁共振成像(MRI)经常会因磁场不均匀而导致图像质量下降。传统的被动垫片技术需要手动放置离散的磁性材料,这对纠正复杂的不均匀性造成了限制。为了克服这一问题,我们提出了一种新颖的 3D 打印方法,利用粘合剂喷射技术实现铁磁油墨浓度范围的连续精确沉积。这种方法可以完全控制被动垫片内的磁矩大小,从而实现对 B0 场不均匀性的定制修正。通过使用线性编程和内部编写的计算机辅助设计(CAD)生成软件优化磁场分布,我们打印出的垫片在产生低球形谐波修正方面取得了可喜的成果。实验评估证明了这些三维打印无源垫片诱导与二阶球谐波相对应的目标磁场的可行性,获得的 B0 图也证明了这一点。打印垫片的电绝缘特性消除了涡流和加热的风险,从而确保了安全性。印制垫片的尺寸制作精度超过了以往的方法,能更精确、更局部地校正受试者特定的不均匀性。研究结果凸显了粘合剂喷射三维打印无源垫片在核磁共振成像垫片制造中的潜力,它是一种多功能、高效的无源垫片制造解决方案,具有提高核磁共振成像质量的潜力,同时也适用于其他类型的磁共振系统。
{"title":"3D printing of ferromagnetic passive shims for field shaping in magnetic resonance imaging","authors":"Hanne Vanduffel ,&nbsp;Quentin Goudard ,&nbsp;An Vanduffel ,&nbsp;Sergey Basov ,&nbsp;Margriet J. Van Bael ,&nbsp;Cesar Parra-Cabrera ,&nbsp;Willy Gsell ,&nbsp;Rodrigo Oliveira-Silva ,&nbsp;Aleksander Matavz ,&nbsp;Wim Vanduffel ,&nbsp;Uwe Himmelreich ,&nbsp;Dimitrios Sakellariou ,&nbsp;Rob Ameloot","doi":"10.1016/j.jmr.2024.107702","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107702","url":null,"abstract":"<div><p>Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink. This approach grants complete control of the magnitude of the magnetic moment within the passive shim enabling tailored corrections of B<sub>0</sub> field inhomogeneities. By optimizing the magnetic field distribution using linear programming and an in-house written Computer-Aided Design (CAD) generation software, we printed shims with promising results in generating low spherical harmonic corrections. Experimental evaluations demonstrate feasibility of these 3D printed passive shims to induce target magnetic fields corresponding to second-order spherical harmonic, as evidenced by acquired B<sub>0</sub> maps. The electrically insulating properties of the printed shims eliminate the risk of eddy currents and heating, thus ensuring safety. The dimensional fabrication accuracy of the printed shims surpasses previous methods, enabling more precise and localized correction of subject-specific inhomogeneities. The findings highlight the potential of binder-jetted 3D printed passive shims in MRI shimming as a versatile and efficient solution for fabricating passive shims, with the potential to enhance the quality of MRI imaging while also being applicable to other types of Magnetic Resonance systems.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107702"},"PeriodicalIF":2.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental confirmation of the formation of collective modes of the magnetization motion of paramagnetic particles in dilute solutions due to spin exchange 实验证实稀溶液中顺磁性粒子的磁化运动因自旋交换而形成集体模式
IF 2.2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-18 DOI: 10.1016/j.jmr.2024.107703
K.M. Salikhov, M.M. Bakirov, I.T. Khairutdinov, R.B. Zaripov

Experimental confirmation of the manifestations of new spin exchange paradigm in EPR spectra of 14N nitroxide radical solutions is presented. It was shown that in the region of relatively low concentrations of radicals, the two side components of the spectrum have a mixed shape (the sum of the absorptive line and dispersive line). The dispersion contributions in these two lines have opposite signs. As the concentration of radicals increases, the contribution of dispersion passes through an extremum and in the region of maximum contribution of dispersion, the contribution of absorption to these two lines changes sign. In the region of high concentrations of radicals, when one homogeneously broadened line is practically observed, it turns out that these side components have resonant frequencies that do not coincide with the frequency of the center of gravity of the spectrum.

实验证实了新的自旋交换范式在 14N 亚硝基溶液的 EPR 光谱中的表现。实验表明,在自由基浓度相对较低的区域,光谱的两个侧边成分具有混合形状(吸收线和色散线的总和)。这两条线的色散贡献具有相反的符号。随着自由基浓度的增加,色散贡献率会出现一个极值,在色散贡献率最大的区域,这两条线的吸收贡献率也会改变符号。在自由基浓度较高的区域,当实际观察到一条均匀增宽的线时,发现这些侧分量的共振频率与光谱重心的频率不一致。
{"title":"Experimental confirmation of the formation of collective modes of the magnetization motion of paramagnetic particles in dilute solutions due to spin exchange","authors":"K.M. Salikhov,&nbsp;M.M. Bakirov,&nbsp;I.T. Khairutdinov,&nbsp;R.B. Zaripov","doi":"10.1016/j.jmr.2024.107703","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107703","url":null,"abstract":"<div><p>Experimental confirmation of the manifestations of new spin exchange paradigm in EPR spectra of <sup>14</sup>N nitroxide radical solutions is presented. It was shown that in the region of relatively low concentrations of radicals, the two side components of the spectrum have a mixed shape (the sum of the absorptive line and dispersive line). The dispersion contributions in these two lines have opposite signs. As the concentration of radicals increases, the contribution of dispersion passes through an extremum and in the region of maximum contribution of dispersion, the contribution of absorption to these two lines changes sign. In the region of high concentrations of radicals, when one homogeneously broadened line is practically observed, it turns out that these side components have resonant frequencies that do not coincide with the frequency of the center of gravity of the spectrum.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107703"},"PeriodicalIF":2.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1