首页 > 最新文献

Journal of magnetic resonance最新文献

英文 中文
The matrix pencil as a tunable filter 作为可调滤波器的矩阵铅笔
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-23 DOI: 10.1016/j.jmr.2024.107780
S.N. Fricke , B.J. Balcom , D.C. Kaseman , M.P. Augustine
Despite inherent sensitivity constraints, nuclear magnetic resonance (NMR) plays an indispensable role in probing molecular structures and dynamics across scientific disciplines. Remarkably, while extensive efforts have targeted instrumental and experimental sensitivity improvements, comparatively little focus has been dedicated to sensitivity enhancement through signal analysis. Amidst this present gap, the matrix pencil method (MPM) has emerged as a versatile algorithm that offers tunable filtering and phasing capabilities. Extensive prior research has established the MPM as an adept fitting tool in signal analysis. Here, the efficacy of the MPM is investigated by precisely modeling noisy data to separate information-bearing signals from noise, thereby expanding its utility in various magnetic resonance applications. Simulated data is used to confirm the ability of the MPM to discern and separate signals from noise. Comparative analyses against standard Fourier-based filtering methods highlight the superior performance of the matrix pencil filter (MPF) in preserving signal fidelity without introducing aliasing artifacts. A variety of experimental data is then explored to demonstrate the proficiency of the MPF in characterizing signal components and correcting phase distortions. Collectively, these case studies underscore the filtering capacity of the MPM, portending its use for analytical sensitivity improvements in a wide range of NMR applications.
尽管存在固有的灵敏度限制,但核磁共振(NMR)在探测分子结构和分子动力学等科学学科中发挥着不可或缺的作用。值得注意的是,虽然人们已经针对仪器和实验灵敏度的提高做出了大量努力,但通过信号分析提高灵敏度的工作却相对较少。在这一空白中,矩阵铅笔法(MPM)作为一种多功能算法应运而生,它具有可调滤波和相位功能。此前的大量研究已经证明,矩阵铅笔法是信号分析中的一种有效拟合工具。本文通过对噪声数据进行精确建模来研究 MPM 的功效,从而将含信息的信号从噪声中分离出来,扩大其在各种磁共振应用中的实用性。模拟数据用于证实 MPM 从噪声中识别和分离信号的能力。与基于傅立叶的标准滤波方法进行的比较分析,凸显了矩阵铅笔滤波器(MPF)在保持信号保真度而不引入混叠伪影方面的优越性能。随后,还探讨了各种实验数据,以证明矩阵铅笔滤波器在表征信号成分和校正相位失真方面的能力。总之,这些案例研究强调了 MPM 的滤波能力,预示着 MPM 将在广泛的 NMR 应用中用于提高分析灵敏度。
{"title":"The matrix pencil as a tunable filter","authors":"S.N. Fricke ,&nbsp;B.J. Balcom ,&nbsp;D.C. Kaseman ,&nbsp;M.P. Augustine","doi":"10.1016/j.jmr.2024.107780","DOIUrl":"10.1016/j.jmr.2024.107780","url":null,"abstract":"<div><div>Despite inherent sensitivity constraints, nuclear magnetic resonance (NMR) plays an indispensable role in probing molecular structures and dynamics across scientific disciplines. Remarkably, while extensive efforts have targeted instrumental and experimental sensitivity improvements, comparatively little focus has been dedicated to sensitivity enhancement through signal analysis. Amidst this present gap, the matrix pencil method (MPM) has emerged as a versatile algorithm that offers tunable filtering and phasing capabilities. Extensive prior research has established the MPM as an adept fitting tool in signal analysis. Here, the efficacy of the MPM is investigated by precisely modeling noisy data to separate information-bearing signals from noise, thereby expanding its utility in various magnetic resonance applications. Simulated data is used to confirm the ability of the MPM to discern and separate signals from noise. Comparative analyses against standard Fourier-based filtering methods highlight the superior performance of the matrix pencil filter (MPF) in preserving signal fidelity without introducing aliasing artifacts. A variety of experimental data is then explored to demonstrate the proficiency of the MPF in characterizing signal components and correcting phase distortions. Collectively, these case studies underscore the filtering capacity of the MPM, portending its use for analytical sensitivity improvements in a wide range of NMR applications.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107780"},"PeriodicalIF":2.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operando electron spin probes for the study of battery processes 用于研究电池过程的操作性电子自旋探针
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-14 DOI: 10.1016/j.jmr.2024.107772
H. Nguyen, E.N. Bassey, E.E. Foley, D.A. Kitchaev, R. Giovine, R.J. Clément

Operando electron spin probes, namely magnetometry and electron paramagnetic resonance (EPR), provide real-time insights into the electrochemical processes occurring in battery materials and devices. In this work, we describe the design criteria and outline the development of operando magnetometry and EPR electrochemical cells. Notably, we show that a clamping mechanism, or springs, are needed to achieve sufficient compression of the battery stack and an electrochemical performance on par with that of a standard Swagelok-type cell. The tandem use of operando EPR and magnetometry allows us to identify five distinct and reversible redox processes taking place on charge and discharge of the intercalation-type LiNi0.5Mn0.5O2 Li-ion cathode. While redox processes in conversion-type electrodes are notoriously difficult to investigate using standard characterization methods (e.g. X-ray based) and/or post mortem analysis, due to the formation of poorly crystalline and metastable reaction intermediates and products during cycling, we show that operando magnetometry provides unique insight into the kinetics and reversibility of Fe nanoparticle formation in the Na3FeF6 electrode for Na-based batteries. Step increases in the cell magnetization upon extended cycling indicate the build-up of Fe nanoparticles in the system, hinting at only partially reversible charge–discharge processes. The broad applicability of the tools developed herein to a range of electrode chemistries and structures, from intercalation to conversion electrodes, and from crystalline to amorphous systems, makes them particularly promising for the development of electrochemical energy storage technologies and beyond.

操作性电子自旋探针,即磁力测量法和电子顺磁共振(EPR),可以实时了解电池材料和设备中发生的电化学过程。在这项工作中,我们描述了设计标准,并概述了操作性磁强计和 EPR 电化学电池的开发过程。值得注意的是,我们表明需要一种夹紧机制或弹簧来实现对电池堆的充分压缩,并使其电化学性能与标准世伟洛克电池相当。通过同时使用操作性 EPR 和磁力测量法,我们确定了插层型 LiNi0.5Mn0.5O2 锂离子阴极在充放电过程中发生的五个不同的可逆氧化还原过程。由于在循环过程中会形成结晶度低且易褪色的反应中间产物和产物,因此使用标准表征方法(如基于 X 射线的表征方法)和/或尸检分析很难研究转换型电极中的氧化还原过程。电池磁化在长时间循环后的阶跃增加表明系统中铁纳米颗粒的积累,暗示充放电过程只有部分可逆。从插层电极到转换电极,从晶体系统到非晶体系统,本文所开发的工具广泛适用于各种电极化学和结构,因此在开发电化学储能技术及其他技术方面大有可为。
{"title":"Operando electron spin probes for the study of battery processes","authors":"H. Nguyen,&nbsp;E.N. Bassey,&nbsp;E.E. Foley,&nbsp;D.A. Kitchaev,&nbsp;R. Giovine,&nbsp;R.J. Clément","doi":"10.1016/j.jmr.2024.107772","DOIUrl":"10.1016/j.jmr.2024.107772","url":null,"abstract":"<div><p><em>Operando</em> electron spin probes, namely magnetometry and electron paramagnetic resonance (EPR), provide real-time insights into the electrochemical processes occurring in battery materials and devices. In this work, we describe the design criteria and outline the development of <em>operando</em> magnetometry and EPR electrochemical cells. Notably, we show that a clamping mechanism, or springs, are needed to achieve sufficient compression of the battery stack and an electrochemical performance on par with that of a standard Swagelok-type cell. The tandem use of <em>operando</em> EPR and magnetometry allows us to identify five distinct and reversible redox processes taking place on charge and discharge of the intercalation-type LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> Li-ion cathode. While redox processes in conversion-type electrodes are notoriously difficult to investigate using standard characterization methods (e.g. X-ray based) and/or <em>post mortem</em> analysis, due to the formation of poorly crystalline and metastable reaction intermediates and products during cycling, we show that <em>operando</em> magnetometry provides unique insight into the kinetics and reversibility of Fe nanoparticle formation in the Na<sub>3</sub>FeF<sub>6</sub> electrode for Na-based batteries. Step increases in the cell magnetization upon extended cycling indicate the build-up of Fe nanoparticles in the system, hinting at only partially reversible charge–discharge processes. The broad applicability of the tools developed herein to a range of electrode chemistries and structures, from intercalation to conversion electrodes, and from crystalline to amorphous systems, makes them particularly promising for the development of electrochemical energy storage technologies and beyond.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107772"},"PeriodicalIF":2.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001563/pdfft?md5=9fe9fcb759db21e365298307ee6aa606&pid=1-s2.0-S1090780724001563-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrent neural network-aided processing of incomplete free induction decays in 1H-MRS of the brain 大脑 1H-MRS 中不完全自由感应衰减的递归神经网络辅助处理方法
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-12 DOI: 10.1016/j.jmr.2024.107762
Eunho Jeong , Joon Jang , Ji-hoon Kim , Hyeonjin Kim

In the case of limited sampling windows or truncation of free induction decays (FIDs) for artifact removal in proton magnetic resonance spectroscopy (1H‐MRS) and spectroscopic imaging (1H‐MRSI), metabolite quantification needs to be performed on incomplete FIDs. Given that FIDs are naturally time-domain sequential data, we investigated the potential of recurrent neural network (RNN)-types of neural networks (NNs) in the processing of incomplete human brain FIDs with or without FID restoration prior to quantitative analysis at 3.0T.

First, we employed an RNN encoder-decoder and developed it to restore incomplete FIDs (rRNN) with different amounts of sampled data. The quantification of metabolites from the rRNN-restored FIDs was achieved by using LCModel. Second, we modified the RNN encoder-decoder and developed it to convert incomplete brain FIDs into incomplete metabolite-only FIDs without restoration, followed by linear regression using a metabolite basis set for quantitative analysis (cRNN). In consideration of the practical benefit of the FID restoration with respect to pure zero-filling, development and analysis of the NNs were focused particularly on the incomplete FIDs with only the first 64 data points retained. All NNs were trained on simulated data and tested mainly on in vivo data acquired from healthy volunteers (n = 27).

Strong correlations were obtained between the NN-derived and ground truth metabolite content (LCModel-derived content on fully sampled FIDs) for myo‐inositol, total choline, and total creatine (normalized to total N-acetylaspartate) on the in vivo data using both rRNN (R = 0.83–0.94; p ≤ 0.05) and cRNN (R = 0.86–0.91; p ≤ 0.05).

RNN-types of NNs have potential in the quantification of the major brain metabolites from the FIDs with substantially reduced sampled data points. For the metabolites with low to medium SNR, the performance of the NNs needs to be further improved, for which development of more elaborate and advanced simulation techniques would be of help, but remains challenging.

在质子磁共振波谱(1H-MRS)和光谱成像(1H-MRSI)中,由于采样窗口有限或为了去除伪影而对自由感应衰减(FID)进行截断,因此需要对不完整的FID进行代谢物定量。鉴于 FID 自然是时域序列数据,我们研究了递归神经网络(RNN)类型的神经网络(NNs)在 3.0T 定量分析之前处理不完整人脑 FID 的潜力,无论是否进行 FID 还原。首先,我们采用了 RNN 编码器-解码器,并对其进行了开发,以还原不同采样数据量的不完整 FIDs(rRNN)。其次,我们修改了 RNN 编码器-解码器,并将其用于将不完整的脑部 FID 转换为不完整的纯代谢物 FID,而无需进行复原,然后使用代谢物基础集进行线性回归,从而进行定量分析(cRNN)。考虑到 FID 还原相对于纯零填充的实际优势,NN 的开发和分析尤其侧重于只保留前 64 个数据点的不完整 FID。使用 rRNN 和 LCMN,体内数据中肌醇、总胆碱和总肌酸(归一化为 N-乙酰天门冬氨酸总量)的 NN 派生代谢物含量与地面真实代谢物含量(LCM 模型在完全采样 FID 上的派生含量)之间存在很强的相关性(R = 0.RNN 类型的 NNN 有潜力在采样数据点大幅减少的情况下从 FID 定量主要脑代谢物。对于信噪比(SNR)为中低的代谢物,NNs 的性能需要进一步提高,为此,开发更精细、更先进的模拟技术将有所帮助,但仍具有挑战性。
{"title":"Recurrent neural network-aided processing of incomplete free induction decays in 1H-MRS of the brain","authors":"Eunho Jeong ,&nbsp;Joon Jang ,&nbsp;Ji-hoon Kim ,&nbsp;Hyeonjin Kim","doi":"10.1016/j.jmr.2024.107762","DOIUrl":"10.1016/j.jmr.2024.107762","url":null,"abstract":"<div><p>In the case of limited sampling windows or truncation of free induction decays (FIDs) for artifact removal in proton magnetic resonance spectroscopy (<sup>1</sup>H‐MRS) and spectroscopic imaging (<sup>1</sup>H‐MRSI), metabolite quantification needs to be performed on incomplete FIDs. Given that FIDs are naturally time-domain sequential data, we investigated the potential of recurrent neural network (RNN)-types of neural networks (NNs) in the processing of incomplete human brain FIDs with or without FID restoration prior to quantitative analysis at 3.0T.</p><p>First, we employed an RNN encoder-decoder and developed it to restore incomplete FIDs (rRNN) with different amounts of sampled data. The quantification of metabolites from the rRNN-restored FIDs was achieved by using LCModel. Second, we modified the RNN encoder-decoder and developed it to convert incomplete brain FIDs into incomplete metabolite-only FIDs without restoration, followed by linear regression using a metabolite basis set for quantitative analysis (cRNN). In consideration of the practical benefit of the FID restoration with respect to pure zero-filling, development and analysis of the NNs were focused particularly on the incomplete FIDs with only the first 64 data points retained. All NNs were trained on simulated data and tested mainly on in vivo data acquired from healthy volunteers (n = 27).</p><p>Strong correlations were obtained between the NN-derived and ground truth metabolite content (LCModel-derived content on fully sampled FIDs) for myo‐inositol, total choline, and total creatine (normalized to total N-acetylaspartate) on the in vivo data using both rRNN (R = 0.83–0.94; p ≤ 0.05) and cRNN (R = 0.86–0.91; p ≤ 0.05).</p><p>RNN-types of NNs have potential in the quantification of the major brain metabolites from the FIDs with substantially reduced sampled data points. For the metabolites with low to medium SNR, the performance of the NNs needs to be further improved, for which development of more elaborate and advanced simulation techniques would be of help, but remains challenging.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107762"},"PeriodicalIF":2.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of pulse and CW EPR T2-relaxation measurements of an inhomogeneously broadened nitroxide spin probe undergoing Heisenberg spin exchange 2. The intercept discrepancy 对进行海森堡自旋交换的不均匀拓宽亚硝基自旋探针进行的脉冲和连续波 EPR T2- 弛豫测量的比较 2.截距差异
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-12 DOI: 10.1016/j.jmr.2024.107771
Barney L. Bales , Miroslav Peric , Robert N. Schwartz , M.M. Bakirov , I.T. Khairutdinov
Experimental confirmation of a theoretical prediction of a non-linear broadening of the spin packets of nitroxide free radicals due to Heisenberg spin exchange at low concentrations, C, is presented. A recent demonstration that spectra with resolved proton hyperfine structure may be analyzed efficiently and accurately was utilized to confirm the theory. As C0, a plot of the spin-packet line width (SPW) curves downward due to the presence of proton hyperfine couplings that increase the number of distinguishable quantum spin states. At higher C, the broadening is linear with C and the results for the spin exchange rate constant determined from the slope of the broadening of the average spin-packet line width and electron spin echo measurements are in agreement. It is shown that applying modest digital smoothing does not change the values of the SPW. An example of a practical application of these methods to published work is presented, allowing an enigma to be resolved.
实验证实了在低浓度 C 下海森堡自旋交换导致硝化自由基自旋包非线性拓宽的理论预测。为了证实这一理论,最近进行了一次演示,证明可以高效、准确地分析质子超频结构的光谱。当 C→0 时,自旋包线宽(SPW)曲线向下弯曲,这是由于质子超细耦合的存在增加了可区分的量子自旋态的数量。在较高的 C 值下,展宽与 C 值呈线性关系,根据平均自旋电子包线宽展宽斜率确定的自旋交换率常数与电子自旋回波测量结果一致。结果表明,应用适度的数字平滑不会改变 SPW 的值。本文还介绍了将这些方法实际应用于已发表论文的实例,从而解开了一个谜团。
{"title":"A comparison of pulse and CW EPR T2-relaxation measurements of an inhomogeneously broadened nitroxide spin probe undergoing Heisenberg spin exchange 2. The intercept discrepancy","authors":"Barney L. Bales ,&nbsp;Miroslav Peric ,&nbsp;Robert N. Schwartz ,&nbsp;M.M. Bakirov ,&nbsp;I.T. Khairutdinov","doi":"10.1016/j.jmr.2024.107771","DOIUrl":"10.1016/j.jmr.2024.107771","url":null,"abstract":"<div><div>Experimental confirmation of a theoretical prediction of a non-linear broadening of the spin packets of nitroxide free radicals due to Heisenberg spin exchange at low concentrations, <span><math><mrow><mi>C</mi></mrow></math></span>, is presented. A recent demonstration that spectra with resolved proton hyperfine structure may be analyzed efficiently and accurately was utilized to confirm the theory. As <span><math><mrow><mi>C</mi><mo>→</mo><mn>0</mn></mrow></math></span>, a plot of the spin-packet line width (SPW) curves downward due to the presence of proton hyperfine couplings that increase the number of distinguishable quantum spin states. At higher <span><math><mrow><mi>C</mi></mrow></math></span>, the broadening is linear with <span><math><mrow><mi>C</mi></mrow></math></span> and the results for the spin exchange rate constant determined from the slope of the broadening of the average spin-packet line width and electron spin echo measurements are in agreement. It is shown that applying modest digital smoothing does not change the values of the SPW. An example of a practical application of these methods to published work is presented, allowing an enigma to be resolved.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107771"},"PeriodicalIF":2.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restriction-induced time-dependent transcytolemmal water exchange: Revisiting the Kӓrger exchange model 限制诱导的时间依赖性跨细胞膜水交换:重新审视Kӓrger交换模型
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-30 DOI: 10.1016/j.jmr.2024.107760
Diwei Shi , Fan Liu , Sisi Li , Li Chen , Xiaoyu Jiang , John C. Gore , Quanshui Zheng , Hua Guo , Junzhong Xu

The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (>10 μm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.

Kӓrger 模型及其衍生物已被广泛用于将跨细胞水交换率(活细胞的一个基本特征)纳入组织扩散磁共振成像(dMRI)信号的分析中。Kӓrger 模型由两个均匀的交换成分组成,由一个交换率常数耦合,并假定测量是在足够长的扩散时间和缓慢的水交换条件下进行的。尽管应用成功,但目前仍不清楚这些假设是否普遍适用于实际的 dMRI 序列和生物组织。特别是,在癌细胞等相对较大的区块中,屏障引起的扩散限制会产生不均匀的磁化分布,从而违反上述假设。这种不均匀性的影响通常被忽视。我们进行了计算机模拟,以量化限制效应如何影响 Kӓrger 模型的不同变体,限制效应在图像中会在区室边界产生边缘增强。结果显示,在细胞体积相对较大(大于 10 μm)的肿瘤等情况下,边缘增强效应会产生更大的、随时间变化的交换率估计值,从而导致高估水交换量,正如之前所报道的那样。此外,较强的扩散梯度、较长的扩散梯度持续时间和较大的细胞尺寸都会导致更明显的边缘增强效应。这有助于我们更好地理解 Kärger 模型在估算不同组织类型的水交换量方面的可行性,并为减轻边缘增强效应的信号采集方法提供了有益的指导。这项工作还表明,有必要对假设 Kärger 模型得到的过高估计的跨小肠水交换率进行修正。
{"title":"Restriction-induced time-dependent transcytolemmal water exchange: Revisiting the Kӓrger exchange model","authors":"Diwei Shi ,&nbsp;Fan Liu ,&nbsp;Sisi Li ,&nbsp;Li Chen ,&nbsp;Xiaoyu Jiang ,&nbsp;John C. Gore ,&nbsp;Quanshui Zheng ,&nbsp;Hua Guo ,&nbsp;Junzhong Xu","doi":"10.1016/j.jmr.2024.107760","DOIUrl":"10.1016/j.jmr.2024.107760","url":null,"abstract":"<div><p>The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (&gt;10 μm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"367 ","pages":"Article 107760"},"PeriodicalIF":2.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001447/pdfft?md5=f8473d8afcad5e5d4a4d7cea3da4a920&pid=1-s2.0-S1090780724001447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The NOAH HSQC-COSY module revisited: A theoretical and practical comparison of pulse sequences 重新审视 NOAH HSQC-COSY 模块:脉冲序列的理论与实践比较
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-24 DOI: 10.1016/j.jmr.2024.107759
Jonathan R.J. Yong , Ēriks Kupče , Tim D.W. Claridge

NMR supersequences, as exemplified by the NOAH (NMR by Ordered Acquisition using 1H detection) technique, are a powerful way of acquiring multiple 2D data sets in much shorter durations. This is accomplished through targeted excitation and detection of the magnetisation belonging to specific isotopologues (‘magnetisation pools’). Separately, the HSQC-COSY experiment has recently seen an increase in popularity due to the high signal dispersion in the indirect dimension and the removal of ambiguity traditionally associated with HSQC-TOCSY experiments. Here, we describe how the HSQC-COSY experiment can be integrated as a ‘module’ within NOAH supersequences. The benefits and drawbacks of several different pulse sequence implementations are discussed, with a particular focus on how sensitivities of other modules in the same supersequence are affected.

以 NOAH(使用 1H 检测的 NMR 有序获取)技术为例,NMR 超序列是一种在更短时间内获取多个二维数据集的强大方法。这是通过有针对性地激发和检测属于特定同位素的磁化("磁化池")来实现的。另外,由于 HSQC-COSY 实验在间接维度上的高信号分散性以及消除了传统 HSQC-TOCSY 实验的模糊性,该实验最近越来越受欢迎。在此,我们将介绍如何将 HSQC-COSY 实验作为一个 "模块 "集成到 NOAH 超序列中。我们讨论了几种不同脉冲序列实施方法的优点和缺点,并特别关注了同一超序列中其他模块的灵敏度如何受到影响。
{"title":"The NOAH HSQC-COSY module revisited: A theoretical and practical comparison of pulse sequences","authors":"Jonathan R.J. Yong ,&nbsp;Ēriks Kupče ,&nbsp;Tim D.W. Claridge","doi":"10.1016/j.jmr.2024.107759","DOIUrl":"10.1016/j.jmr.2024.107759","url":null,"abstract":"<div><p>NMR supersequences, as exemplified by the NOAH (NMR by Ordered Acquisition using <sup>1</sup>H detection) technique, are a powerful way of acquiring multiple 2D data sets in much shorter durations. This is accomplished through targeted excitation and detection of the magnetisation belonging to specific isotopologues (‘magnetisation pools’). Separately, the HSQC-COSY experiment has recently seen an increase in popularity due to the high signal dispersion in the indirect dimension and the removal of ambiguity traditionally associated with HSQC-TOCSY experiments. Here, we describe how the HSQC-COSY experiment can be integrated as a ‘module’ within NOAH supersequences. The benefits and drawbacks of several different pulse sequence implementations are discussed, with a particular focus on how sensitivities of other modules in the same supersequence are affected.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"367 ","pages":"Article 107759"},"PeriodicalIF":2.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001435/pdfft?md5=67f79ba4d83ba494e82823eaf06fb5d5&pid=1-s2.0-S1090780724001435-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards shorter composite 180° refocusing pulses for NMR 为 NMR 开发更短的 180° 复合再聚焦脉冲
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-19 DOI: 10.1016/j.jmr.2024.107758
Stephen Wimperis

Novel composite 180° pulses are designed for use in nuclear magnetic resonance (NMR) and verified experimentally using solution-state 1H NMR spectroscopy. Rather than being constructed from 180° pulses (as in much recent work), the new composite pulses are constructed from 90° pulses, with the aim of finding sequences that are shorter overall than existing equivalents. The primary (but not exclusive) focus is on composite pulses that are dual compensated – simultaneously broadband with respect to both inhomogeneity of the radiofrequency field and resonance offset – and have antisymmetric phase schemes, such that they can be used to form spin echoes without the introduction of a phase error. In particular, a new antisymmetric dual-compensated refocusing pulse is presented that is constructed from ten 90° pulses, equivalent to just five 180° pulses.

设计了用于核磁共振(NMR)的新型 180° 复合脉冲,并利用溶液态 1H NMR 光谱进行了实验验证。新的复合脉冲不是由 180° 脉冲构建而成(如最近的许多研究成果),而是由 90° 脉冲构建而成,目的是找到比现有等效脉冲更短的序列。主要重点(但不是唯一重点)是双补偿复合脉冲--在射频场不均匀性和共振偏移方面同时具有宽带,并且具有非对称相位方案,这样就可以在不引入相位误差的情况下用于形成自旋回波。特别值得一提的是,本文介绍了一种新型非对称双补偿再聚焦脉冲,它由 10 个 90° 脉冲构成,相当于 5 个 180° 脉冲。
{"title":"Towards shorter composite 180° refocusing pulses for NMR","authors":"Stephen Wimperis","doi":"10.1016/j.jmr.2024.107758","DOIUrl":"10.1016/j.jmr.2024.107758","url":null,"abstract":"<div><p>Novel composite 180° pulses are designed for use in nuclear magnetic resonance (NMR) and verified experimentally using solution-state <sup>1</sup>H NMR spectroscopy. Rather than being constructed from 180° pulses (as in much recent work), the new composite pulses are constructed from 90° pulses, with the aim of finding sequences that are shorter overall than existing equivalents. The primary (but not exclusive) focus is on composite pulses that are dual compensated – simultaneously broadband with respect to both inhomogeneity of the radiofrequency field and resonance offset – and have antisymmetric phase schemes, such that they can be used to form spin echoes without the introduction of a phase error. In particular, a new antisymmetric dual-compensated refocusing pulse is presented that is constructed from ten 90° pulses, equivalent to just five 180° pulses.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"367 ","pages":"Article 107758"},"PeriodicalIF":2.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001423/pdfft?md5=759c2933286a1c53d0fc75bfcb2a382b&pid=1-s2.0-S1090780724001423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Diffusion Exchange Ratio (DEXR): A minimal sampling of diffusion exchange spectroscopy to probe exchange, restriction, and time-dependence 扩散交换比(DEXR):扩散交换光谱的最小取样,用于探测交换、限制和时间依赖性。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-06 DOI: 10.1016/j.jmr.2024.107745
Teddy X. Cai , Nathan H. Williamson , Rea Ravin , Peter J. Basser
<div><p>Water exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence (s) or signal model (s). In general, the trend has been towards data-intensive fitting of highly parameterized models. We take the opposite approach and show that a judicious sub-sample of diffusion exchange spectroscopy (DEXSY) data can be used to robustly quantify exchange, as well as restriction, in a data-efficient manner. This sampling produces a ratio of two points per mixing time: (i) one point with equal diffusion weighting in both encoding periods, which gives maximal exchange contrast, and (ii) one point with the same <em>total</em> diffusion weighting in just the first encoding period, for normalization. We call this quotient the Diffusion EXchange Ratio (DEXR). Furthermore, we show that it can be used to probe time-dependent diffusion by estimating the velocity autocorrelation function (VACF) over intermediate to long times (<span><math><mrow><mo>∼</mo><mn>2</mn><mo>−</mo><mn>500</mn><mspace></mspace><mi>ms</mi></mrow></math></span>). We provide a comprehensive theoretical framework for the design of DEXR experiments in the case of static or constant gradients. Data from Monte Carlo simulations and experiments acquired in fixed and viable <em>ex vivo</em> neonatal mouse spinal cord using a permanent magnet system are presented to test and validate this approach. In viable spinal cord, we report the following apparent parameters from just 6 data points: <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mn>17</mn><mo>±</mo><mn>4</mn><mspace></mspace><mi>ms</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>N</mi><mi>G</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>72</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>eff</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn><mspace></mspace><mi>μm</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>eff</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>19</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>04</mn><mspace></mspace><mi>μm/ms</mi></mrow></math></span>, which correspond to the exchange time, restricted or non-Gaussian signal fraction, an effective spherical radius, and permeability, respectively. For the VACF, we report a long-time, power-law scaling with <span><math><mrow><mo>≈</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>4</mn></mrow></msup></mrow></math></span>, which is approximately consistent with disordered domains in 3-D. Overall, the DEXR method is shown to be highly efficient, capable of providing valuable quantitative
人们越来越认识到,水交换是一个重要的生物过程,会影响使用扩散磁共振对生物组织的研究。然而,与用于描述限制的方法相比,测量交换的方法仍不成熟,在最佳脉冲序列或信号模型方面也未达成共识。总的来说,目前的趋势是对高度参数化的模型进行数据密集型拟合。我们采取了相反的方法,并证明扩散交换光谱(DEXSY)数据的明智子样本可用于以数据高效的方式稳健地量化交换和限制。这种取样方法在每个混合时间段产生两个点的比率:(i) 一个点在两个编码时间段的扩散权重相等,从而产生最大的交换对比度;(ii) 一个点在第一个编码时间段的总扩散权重相同,用于归一化。我们称这种商为扩散交换比(DEXR)。此外,我们还展示了它可以通过估计中长时间(2∼500 毫秒)的速度自相关函数(VACF)来探测随时间变化的扩散。我们为静态或恒定梯度情况下的 DEXR 实验设计提供了一个全面的理论框架。为了测试和验证这种方法,我们展示了蒙特卡罗模拟和使用永磁系统在固定和存活的体外新生小鼠脊髓中获得的实验数据。在活体脊髓中,我们仅从 6 个数据点报告了以下表观参数:τk=17±4ms、fNG=0.72±0.01、Reff=1.05±0.01μm 和 κeff=0.19±0.04μm/ms,它们分别对应于交换时间、受限或非高斯信号分数、有效球半径和通透性。对于 VACF,我们报告了一个长时间的幂律缩放,≈t-2.4,这与三维无序域大致相符。总体而言,DEXR 方法效率很高,能够利用最少的磁共振数据提供有价值的定量扩散指标。
{"title":"The Diffusion Exchange Ratio (DEXR): A minimal sampling of diffusion exchange spectroscopy to probe exchange, restriction, and time-dependence","authors":"Teddy X. Cai ,&nbsp;Nathan H. Williamson ,&nbsp;Rea Ravin ,&nbsp;Peter J. Basser","doi":"10.1016/j.jmr.2024.107745","DOIUrl":"10.1016/j.jmr.2024.107745","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Water exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence (s) or signal model (s). In general, the trend has been towards data-intensive fitting of highly parameterized models. We take the opposite approach and show that a judicious sub-sample of diffusion exchange spectroscopy (DEXSY) data can be used to robustly quantify exchange, as well as restriction, in a data-efficient manner. This sampling produces a ratio of two points per mixing time: (i) one point with equal diffusion weighting in both encoding periods, which gives maximal exchange contrast, and (ii) one point with the same &lt;em&gt;total&lt;/em&gt; diffusion weighting in just the first encoding period, for normalization. We call this quotient the Diffusion EXchange Ratio (DEXR). Furthermore, we show that it can be used to probe time-dependent diffusion by estimating the velocity autocorrelation function (VACF) over intermediate to long times (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;∼&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;500&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;ms&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;). We provide a comprehensive theoretical framework for the design of DEXR experiments in the case of static or constant gradients. Data from Monte Carlo simulations and experiments acquired in fixed and viable &lt;em&gt;ex vivo&lt;/em&gt; neonatal mouse spinal cord using a permanent magnet system are presented to test and validate this approach. In viable spinal cord, we report the following apparent parameters from just 6 data points: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;17&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;ms&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;72&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;01&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;eff&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;05&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;01&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;μm&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;eff&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;19&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;04&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;μm/ms&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which correspond to the exchange time, restricted or non-Gaussian signal fraction, an effective spherical radius, and permeability, respectively. For the VACF, we report a long-time, power-law scaling with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which is approximately consistent with disordered domains in 3-D. Overall, the DEXR method is shown to be highly efficient, capable of providing valuable quantitative ","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"366 ","pages":"Article 107745"},"PeriodicalIF":2.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A complete 3D-printed tool kit for Solid-State NMR sample and rotor handling 用于固态 NMR 样品和转子处理的全套 3D 打印工具包
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-06 DOI: 10.1016/j.jmr.2024.107748
Martin A. Olson , Ruixian Han , Thirupathi Ravula , Collin G. Borcik , Songlin Wang , Perla A. Viera , Chad M. Rienstra

Solid state NMR (SSNMR) is a highly versatile and broadly applicable method for studying the structure and dynamics of biomolecules and materials. For scientists entering the field of SSNMR, the many quotidian activities required in the workflow to prepare samples for data collection can present a significant barrier to adoption. These steps include transfer of samples into rotors, marking the reflective surfaces for high sensitivity tachometer signal detection, inserting rotors into the magic-angle spinning (MAS) stator, achieving stable spinning, and removing and storing rotors to ensure reproducibility of data collection conditions. Even experienced spectroscopists experience occasional problems with these operations, and the cumulative probability of a delay to successful data collection is high enough to cause frequent disruptions to instrument schedules, particularly in the context of large facilities serving a diverse community of users. These problems are all amplified when utilizing rotors smaller than about 4 mm in diameter. Therefore, to improve the reliability and robustness of SSNMR sample preparation workflows, here we describe a set of tools for rotor packing, unpacking, tachometer marking, extraction and storage. Stereolithography 3D printing was employed as a cost-effective and convenient method for prototyping and manufacturing a full range of designs suitable for several types of probes and rotor geometries.

固态核磁共振(SSNMR)是一种用途广泛的方法,可用于研究生物分子和材料的结构与动力学。对于初涉 SSNMR 领域的科学家来说,工作流程中为数据采集准备样品所需的许多日常活动可能会成为采用该方法的重大障碍。这些步骤包括将样品转移到转子中、标记反射表面以进行高灵敏度转速计信号检测、将转子插入魔角旋转(MAS)定子中、实现稳定旋转以及移除和储存转子以确保数据采集条件的可重复性。即使是经验丰富的光谱分析人员在这些操作过程中也会偶尔遇到问题,而延迟成功采集数据的累积概率很高,足以导致仪器计划经常被打乱,尤其是在大型设施为不同用户群体提供服务的情况下。当使用直径小于 4 毫米的转子时,这些问题都会加剧。因此,为了提高 SSNMR 样品制备工作流程的可靠性和稳健性,我们在此介绍一套用于转子包装、拆包、转速计标记、提取和存储的工具。我们采用了立体光刻 3D 打印技术,这种方法既经济又方便,可用于原型设计和制造适合多种类型探针和转子几何形状的全套设计。
{"title":"A complete 3D-printed tool kit for Solid-State NMR sample and rotor handling","authors":"Martin A. Olson ,&nbsp;Ruixian Han ,&nbsp;Thirupathi Ravula ,&nbsp;Collin G. Borcik ,&nbsp;Songlin Wang ,&nbsp;Perla A. Viera ,&nbsp;Chad M. Rienstra","doi":"10.1016/j.jmr.2024.107748","DOIUrl":"10.1016/j.jmr.2024.107748","url":null,"abstract":"<div><p>Solid state NMR (SSNMR) is a highly versatile and broadly applicable method for studying the structure and dynamics of biomolecules and materials. For scientists entering the field of SSNMR, the many quotidian activities required in the workflow to prepare samples for data collection can present a significant barrier to adoption. These steps include transfer of samples into rotors, marking the reflective surfaces for high sensitivity tachometer signal detection, inserting rotors into the magic-angle spinning (MAS) stator, achieving stable spinning, and removing and storing rotors to ensure reproducibility of data collection conditions. Even experienced spectroscopists experience occasional problems with these operations, and the cumulative probability of a delay to successful data collection is high enough to cause frequent disruptions to instrument schedules, particularly in the context of large facilities serving a diverse community of users. These problems are all amplified when utilizing rotors smaller than about 4 mm in diameter. Therefore, to improve the reliability and robustness of SSNMR sample preparation workflows, here we describe a set of tools for rotor packing, unpacking, tachometer marking, extraction and storage. Stereolithography 3D printing was employed as a cost-effective and convenient method for prototyping and manufacturing a full range of designs suitable for several types of probes and rotor geometries.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"366 ","pages":"Article 107748"},"PeriodicalIF":2.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetrakis(trimethylsilyl)silane as a standard compound for fast spinning Solid-State NMR experiments 四(三甲基硅基)硅烷作为快速旋转固态核磁共振实验的标准化合物。
IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-05 DOI: 10.1016/j.jmr.2024.107747
Ruixian Han , Alexander L. Paterson , Moses H. Milchberg , Yuanchi Pang , Boden H. Vanderloop , Chad M. Rienstra

The development of magic angle spinning (MAS) at rates ranging from 30 kHz to greater than 100 kHz has substantially advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy 1H-detection methods. The small rotors required for such MAS rates have a limited sample volume and low 13C-detection sensitivity, rendering the traditional set of standard compounds for SSNMR insufficient or highly inconvenient for shimming and magic-angle calibration. Additionally, the reproducibility of magic angle setting, chemical shift referencing, and probe position can be especially critical for SSNMR experiments at high fields. These conditions suggest the need for a high signal-to-noise ratio (SNR) 1H-detection standard compound, which is preferably multi-purpose, to simplify instrument set up for ultra-fast MAS SSNMR instruments at high magnetic fields. In this study, we present the results for setting magic angle and shimming using tetrakis(trimethylsilyl)silane (TTMSS, or TKS), a tetramethylsilane (TMS) analogue, at near 40 kHz and demonstrate that we can achieve favorable results in less time but with equal or superior precision as traditional KBr and adamantane standards. The high SNR and TMS-like chemical shift of TKS also opens the possibilities for using TKS as an internal standard with biological samples. A single rotor containing a four-component mixture of TKS, adamantane, uniformly 13C, 15N-labeled N-acetyl valine and KBr was used to perform a complete configuration and calibration of a SSNMR probe without sample changes. We anticipate TKS as a standard compound to be especially effective at very high MAS conditions and to greatly simplify the instrument set up for high and ultra-high field SSNMR instruments.

速率从 30 kHz 到超过 100 kHz 的魔角旋转(MAS)技术的发展大大推进了固态核磁共振(SSNMR)光谱 1H 检测方法的发展。这种 MAS 速率所需的小型转子具有样品体积有限和 13C 检测灵敏度低的特点,使得传统的 SSNMR 标准化合物集不足以或极不方便进行垫片和魔角校准。此外,魔角设置、化学位移参照和探针位置的可重复性对于高场 SSNMR 实验尤为重要。这些条件表明,需要一种高信噪比(SNR)的 1H 检测标准化合物,最好是多用途的,以简化高磁场下超快 MAS SSNMR 仪器的设置。在本研究中,我们介绍了在接近 40 kHz 频率下使用四甲基硅烷(TMS)类似物四(三甲基硅基)硅烷(TTMSS,或 TKS)设置魔幻角和垫片的结果,并证明我们可以在更短的时间内获得与传统 KBr 和金刚烷标准相同或更高精度的良好结果。TKS 的高信噪比和类似 TMS 的化学位移也为将 TKS 用作生物样品的内标提供了可能性。我们使用含有 TKS、金刚烷、13C、15N 标记的 N-乙酰缬氨酸和 KBr 四种成分混合物的单个转子,在不改变样品的情况下完成了 SSNMR 探针的完整配置和校准。我们预计 TKS 作为标准化合物在极高 MAS 条件下会特别有效,并能大大简化高场和超高场 SSNMR 仪器的设置。
{"title":"Tetrakis(trimethylsilyl)silane as a standard compound for fast spinning Solid-State NMR experiments","authors":"Ruixian Han ,&nbsp;Alexander L. Paterson ,&nbsp;Moses H. Milchberg ,&nbsp;Yuanchi Pang ,&nbsp;Boden H. Vanderloop ,&nbsp;Chad M. Rienstra","doi":"10.1016/j.jmr.2024.107747","DOIUrl":"10.1016/j.jmr.2024.107747","url":null,"abstract":"<div><p>The development of magic angle spinning (MAS) at rates ranging from 30 kHz to greater than 100 kHz has substantially advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy <sup>1</sup>H-detection methods. The small rotors required for such MAS rates have a limited sample volume and low <sup>13</sup>C-detection sensitivity, rendering the traditional set of standard compounds for SSNMR insufficient or highly inconvenient for shimming and magic-angle calibration. Additionally, the reproducibility of magic angle setting, chemical shift referencing, and probe position can be especially critical for SSNMR experiments at high fields. These conditions suggest the need for a high signal-to-noise ratio (SNR) <sup>1</sup>H-detection standard compound, which is preferably multi-purpose, to simplify instrument set up for ultra-fast MAS SSNMR instruments at high magnetic fields. In this study, we present the results for setting magic angle and shimming using tetrakis(trimethylsilyl)silane (TTMSS, or TKS), a tetramethylsilane (TMS) analogue, at near 40 kHz and demonstrate that we can achieve favorable results in less time but with equal or superior precision as traditional KBr and adamantane standards. The high SNR and TMS-like chemical shift of TKS also opens the possibilities for using TKS as an internal standard with biological samples. A single rotor containing a four-component mixture of TKS, adamantane, uniformly <sup>13</sup>C, <sup>15</sup>N-labeled N-acetyl valine and KBr was used to perform a complete configuration and calibration of a SSNMR probe without sample changes. We anticipate TKS as a standard compound to be especially effective at very high MAS conditions and to greatly simplify the instrument set up for high and ultra-high field SSNMR instruments.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"367 ","pages":"Article 107747"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1