Alberto Murillo-Marrodán, Yury Gamin, Liudmila Kaputkina, Eduardo García, Alexander Aleshchenko, Hamed Aghajani Derazkola, Alexey Pashkov, Evgeniy Belokon
The cross-roll piercing and elongation (CPE) is a forming process performed at high temperatures and high strain rates. The final product quality is strongly dependent on its microstructure. In this study, a finite element method (FEM) model was developed to better understand plastic deformation effects on microstructure during CPE and to analyze alternative thermo-mechanical processing routes. Specific models were used to simulate dynamic and meta-dynamic recrystallization (DRX and MDRX) for the processing of superaustenitic stainless steel (SASS). In addition, the CPE of SASS was investigated experimentally. The microstructure, mechanical properties, and chemical changes of the final product were assessed using optical microscopy, hardness testing, X-ray diffraction, and SEM-EDS. The results revealed higher temperatures and strain rates in the exterior area of the shell after piercing, and MDRX occurred in the whole thickness. However, an average grain size reduction of 13.9% occurred only in the shell middle and inner diameters. During elongation, the highest values of the strain rate and DRX were observed in the inner region, exhibiting a grain size reduction of 38%. Spread in terms of grain size and grain shape anisotropy was found to be less accentuated for tube samples as compared to the pierced shells.
{"title":"Microstructural and Mechanical Analysis of Seamless Pipes Made of Superaustenitic Stainless Steel UsingCross-Roll Piercing and Elongation","authors":"Alberto Murillo-Marrodán, Yury Gamin, Liudmila Kaputkina, Eduardo García, Alexander Aleshchenko, Hamed Aghajani Derazkola, Alexey Pashkov, Evgeniy Belokon","doi":"10.3390/jmmp7050185","DOIUrl":"https://doi.org/10.3390/jmmp7050185","url":null,"abstract":"The cross-roll piercing and elongation (CPE) is a forming process performed at high temperatures and high strain rates. The final product quality is strongly dependent on its microstructure. In this study, a finite element method (FEM) model was developed to better understand plastic deformation effects on microstructure during CPE and to analyze alternative thermo-mechanical processing routes. Specific models were used to simulate dynamic and meta-dynamic recrystallization (DRX and MDRX) for the processing of superaustenitic stainless steel (SASS). In addition, the CPE of SASS was investigated experimentally. The microstructure, mechanical properties, and chemical changes of the final product were assessed using optical microscopy, hardness testing, X-ray diffraction, and SEM-EDS. The results revealed higher temperatures and strain rates in the exterior area of the shell after piercing, and MDRX occurred in the whole thickness. However, an average grain size reduction of 13.9% occurred only in the shell middle and inner diameters. During elongation, the highest values of the strain rate and DRX were observed in the inner region, exhibiting a grain size reduction of 38%. Spread in terms of grain size and grain shape anisotropy was found to be less accentuated for tube samples as compared to the pierced shells.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"234 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135766392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marius Wolf, Kai Werum, Wolfgang Eberhardt, Thomas Günther, André Zimmermann
LDS-MIDs (laser direct structured mechatronic integrated devices) are 3D (three-dimensional) circuit carriers that are used in many applications with a focus on antennas. However, thanks to the rising frequencies of HF (high-frequency) systems in 5G and radar applications up to the mmWave (millimeter wave) region, the requirements regarding the geometrical accuracy and minimal wall thicknesses for proper signal propagation in mmWave circuits became more strict. Additionally, interest in combining those with 3D microstructures like trenches or bumps for optimizing transmission lines and subsequent mounting processes is rising. The change from IM (injection molding) to ICM (injection compression molding) could offer a solution for improving the 3D geometries of LDS-MIDs. To enhance the scientific insight into this process variant, this paper reports on the manufacturing of LDS-MIDs for mmWave applications. Measurements of the warpage, homogeneity of local wall thicknesses, and replication accuracy of different trenches and bumps for mounting purposes are presented. Additionally, the effect of a change in the manufacturing process from IM to ICM regarding the dielectric properties of the used thermoplastics is reported as well as the influence of ICM on the properties of LDS metallization—in particular the metallization roughness and adhesion strength. This paper is then concluded by reporting on the HF performance of CPWs (coplanar waveguides) on LDS-MIDs in comparison to an HF-PCB.
{"title":"Injection Compression Molding of LDS-MID for Millimeter Wave Applications","authors":"Marius Wolf, Kai Werum, Wolfgang Eberhardt, Thomas Günther, André Zimmermann","doi":"10.3390/jmmp7050184","DOIUrl":"https://doi.org/10.3390/jmmp7050184","url":null,"abstract":"LDS-MIDs (laser direct structured mechatronic integrated devices) are 3D (three-dimensional) circuit carriers that are used in many applications with a focus on antennas. However, thanks to the rising frequencies of HF (high-frequency) systems in 5G and radar applications up to the mmWave (millimeter wave) region, the requirements regarding the geometrical accuracy and minimal wall thicknesses for proper signal propagation in mmWave circuits became more strict. Additionally, interest in combining those with 3D microstructures like trenches or bumps for optimizing transmission lines and subsequent mounting processes is rising. The change from IM (injection molding) to ICM (injection compression molding) could offer a solution for improving the 3D geometries of LDS-MIDs. To enhance the scientific insight into this process variant, this paper reports on the manufacturing of LDS-MIDs for mmWave applications. Measurements of the warpage, homogeneity of local wall thicknesses, and replication accuracy of different trenches and bumps for mounting purposes are presented. Additionally, the effect of a change in the manufacturing process from IM to ICM regarding the dielectric properties of the used thermoplastics is reported as well as the influence of ICM on the properties of LDS metallization—in particular the metallization roughness and adhesion strength. This paper is then concluded by reporting on the HF performance of CPWs (coplanar waveguides) on LDS-MIDs in comparison to an HF-PCB.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vadim R. Gasiyarov, Andrey A. Radionov, Boris M. Loginov, Mark A. Zinchenko, Olga A. Gasiyarova, Alexander S. Karandaev, Vadim R. Khramshin
Creating digital twins of industrial equipment requires the development of adequate virtual models, and the calculation of their parameters is a complex scientific and practical problem. To configure and digitally commission automated drives, two-mass electromechanical system models are used. A promising area in which to implement such models is the development of digital shadows, namely drive position observers. Connecting virtual models for online data exchange predetermines the tightening of requirements for their parameter calculation accuracy. Therefore, developing accessible techniques for calculating electromechanical system coordinates is an urgent problem. These parameters are most accurately defined by experiments. The contribution of this paper is the proposition of a method for defining the two-mass system model parameters using the oscillograms obtained in the operating and emergency modes. The method is developed for the horizontal stand drives of a plate mill 5000 and is supported by numerical examples. The technique is universal and comprises calculating the rotating mass inertia torques, elastic stiffness and oscillation damping coefficients, and the time constants of the motor air gap torque control loop. The obtained results have been applied to the development of the elastic torque observer of the rolling stand’s electromechanical system. A satisfactory coordinate recovery accuracy has been approved for both open and closed angular gaps in mechanical joints. Recommendations are given for the use of the method in developing process parameter control algorithms based on automated drive position observers. This contributes to the development of the theory and practice of building digital control systems and the implementation of the Industry 4.0 concept in industrial companies.
{"title":"Method for Defining Parameters of Electromechanical System Model as Part of Digital Twin of Rolling Mill","authors":"Vadim R. Gasiyarov, Andrey A. Radionov, Boris M. Loginov, Mark A. Zinchenko, Olga A. Gasiyarova, Alexander S. Karandaev, Vadim R. Khramshin","doi":"10.3390/jmmp7050183","DOIUrl":"https://doi.org/10.3390/jmmp7050183","url":null,"abstract":"Creating digital twins of industrial equipment requires the development of adequate virtual models, and the calculation of their parameters is a complex scientific and practical problem. To configure and digitally commission automated drives, two-mass electromechanical system models are used. A promising area in which to implement such models is the development of digital shadows, namely drive position observers. Connecting virtual models for online data exchange predetermines the tightening of requirements for their parameter calculation accuracy. Therefore, developing accessible techniques for calculating electromechanical system coordinates is an urgent problem. These parameters are most accurately defined by experiments. The contribution of this paper is the proposition of a method for defining the two-mass system model parameters using the oscillograms obtained in the operating and emergency modes. The method is developed for the horizontal stand drives of a plate mill 5000 and is supported by numerical examples. The technique is universal and comprises calculating the rotating mass inertia torques, elastic stiffness and oscillation damping coefficients, and the time constants of the motor air gap torque control loop. The obtained results have been applied to the development of the elastic torque observer of the rolling stand’s electromechanical system. A satisfactory coordinate recovery accuracy has been approved for both open and closed angular gaps in mechanical joints. Recommendations are given for the use of the method in developing process parameter control algorithms based on automated drive position observers. This contributes to the development of the theory and practice of building digital control systems and the implementation of the Industry 4.0 concept in industrial companies.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135968073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Within the rapidly growing market for fiber-reinforced plastics (FRPs), conventional production processes involving molds are not cost-efficient for prototype and small series production. Therefore, new flexible forming techniques are increasingly being researched, many of which have been inspired by incremental sheet metal forming (ISF). Due to the different deformation mechanisms of woven reinforcement fibers and metal sheets, ISF is not directly applicable to FRP. Instead, shear and bending of the fibers need to be realized. Therefore, a new dieless forming process for the production of FRP supported by metal wire mesh as an auxiliary material is proposed. Two standard tools, such as hemispherical punches, are used to locally bend a reversible layup of metal wire mesh and woven reinforcement fiber fabric enclosed in a vacuum bag. Therefore, the mesh aids in introducing shear into the material due to its ability to transmit compressive in-plane forces, and it ensures that the otherwise flexible fabric maintains the intended deformation until the part is cured or solidified. Basic experiments are conducted using thermoset prepreg, woven commingled yarn fabric, and thermoplastic organo sheets, proving the feasibility of the approach.
{"title":"Investigation of Metal Wire Mesh as Support Material for Dieless Forming of Woven Reinforcement Textiles","authors":"Jan-Erik Rath, Thorsten Schüppstuhl","doi":"10.3390/jmmp7050182","DOIUrl":"https://doi.org/10.3390/jmmp7050182","url":null,"abstract":"Within the rapidly growing market for fiber-reinforced plastics (FRPs), conventional production processes involving molds are not cost-efficient for prototype and small series production. Therefore, new flexible forming techniques are increasingly being researched, many of which have been inspired by incremental sheet metal forming (ISF). Due to the different deformation mechanisms of woven reinforcement fibers and metal sheets, ISF is not directly applicable to FRP. Instead, shear and bending of the fibers need to be realized. Therefore, a new dieless forming process for the production of FRP supported by metal wire mesh as an auxiliary material is proposed. Two standard tools, such as hemispherical punches, are used to locally bend a reversible layup of metal wire mesh and woven reinforcement fiber fabric enclosed in a vacuum bag. Therefore, the mesh aids in introducing shear into the material due to its ability to transmit compressive in-plane forces, and it ensures that the otherwise flexible fabric maintains the intended deformation until the part is cured or solidified. Basic experiments are conducted using thermoset prepreg, woven commingled yarn fabric, and thermoplastic organo sheets, proving the feasibility of the approach.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. A. P. Prabhakar, Akash Korgal, Arun Kumar Shettigar, Mervin A. Herbert, Manjunath Patel Gowdru Chandrashekharappa, Danil Yurievich Pimenov, Khaled Giasin
This review reports on the influencing parameters on the joining parts quality of tools and techniques applied for conducting process analysis and optimizing the friction stir welding process (FSW). The important FSW parameters affecting the joint quality are the rotational speed, tilt angle, traverse speed, axial force, and tool profile geometry. Data were collected corresponding to different processing materials and their process outcomes were analyzed using different experimental techniques. The optimization techniques were analyzed, highlighting their potential advantages and limitations. Process measurement techniques enable feedback collection during the process using sensors (force, torque, power, and temperature data) integrated with FSW machines. The use of signal processing coupled with artificial intelligence and machine learning algorithms produced better weld quality was discussed.
{"title":"A Review of Optimization and Measurement Techniques of the Friction Stir Welding (FSW) Process","authors":"D. A. P. Prabhakar, Akash Korgal, Arun Kumar Shettigar, Mervin A. Herbert, Manjunath Patel Gowdru Chandrashekharappa, Danil Yurievich Pimenov, Khaled Giasin","doi":"10.3390/jmmp7050181","DOIUrl":"https://doi.org/10.3390/jmmp7050181","url":null,"abstract":"This review reports on the influencing parameters on the joining parts quality of tools and techniques applied for conducting process analysis and optimizing the friction stir welding process (FSW). The important FSW parameters affecting the joint quality are the rotational speed, tilt angle, traverse speed, axial force, and tool profile geometry. Data were collected corresponding to different processing materials and their process outcomes were analyzed using different experimental techniques. The optimization techniques were analyzed, highlighting their potential advantages and limitations. Process measurement techniques enable feedback collection during the process using sensors (force, torque, power, and temperature data) integrated with FSW machines. The use of signal processing coupled with artificial intelligence and machine learning algorithms produced better weld quality was discussed.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135251927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electromagnetic forming is applied to form metal sheet parts from both non-ferrous and ferrous materials. In this paper, the electromagnetic forming behavior of aluminum alloy, copper and steel sheets was investigated through experiments. The disk-shaped specimens were electromagnetically free bulged with increasing deformation energies and parts with different deformation depths were obtained. The deformation was done with and without clamping the movement of the specimens’ edges. The specimens were printed with a mesh of diametrical lines and concentric circles with a predetermined pitch. The mesh served to determine the displacements in the mesh nodes after the deformation of the specimens, with which the axial, radial and circumferential strains were then calculated. The experimental data obtained was subjected to statistical correlation and regression analyses, and the mathematical models for the three main strains in each material were established. The strains of AlMn0.5Mg0.5 and Cu-OF parts are maximum in the center and have a similar variation, while the FeP04 parts have the maximum strains in an intermediate zone between the center and the edge.
{"title":"Experimental and Numerical Investigations on Strains of Metal Sheet Parts Processed by Electromagnetic Forming","authors":"Dorin Luca, Dorian D. Luca","doi":"10.3390/jmmp7050180","DOIUrl":"https://doi.org/10.3390/jmmp7050180","url":null,"abstract":"Electromagnetic forming is applied to form metal sheet parts from both non-ferrous and ferrous materials. In this paper, the electromagnetic forming behavior of aluminum alloy, copper and steel sheets was investigated through experiments. The disk-shaped specimens were electromagnetically free bulged with increasing deformation energies and parts with different deformation depths were obtained. The deformation was done with and without clamping the movement of the specimens’ edges. The specimens were printed with a mesh of diametrical lines and concentric circles with a predetermined pitch. The mesh served to determine the displacements in the mesh nodes after the deformation of the specimens, with which the axial, radial and circumferential strains were then calculated. The experimental data obtained was subjected to statistical correlation and regression analyses, and the mathematical models for the three main strains in each material were established. The strains of AlMn0.5Mg0.5 and Cu-OF parts are maximum in the center and have a similar variation, while the FeP04 parts have the maximum strains in an intermediate zone between the center and the edge.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Almadani, Ahmet Guner, Hany Hassanin, Khamis Essa
Single-point incremental forming (SPIF) has emerged as a time-efficient approach that offers increased material formability compared to conventional sheet-metal forming techniques. However, the physical interaction between the forming tool and the sheet poses challenges, such as tool wear and formability limits. This study introduces a novel sheet-forming technique called contactless single-point incremental forming (CSPIF), which uses hot compressed air as a deformation tool, eliminating the requirement for physical interaction between the sheet and a rigid forming tool. In this study, a polycarbonate sheet was chosen as the case-study material and subjected to the developed CSPIF. The experiments were carried out at an air temperature of 160 °C, air pressure of 1 bar, a nozzle speed of 750 mm/min, and a step-down thickness of 0.75 mm. A Schlieren setup and a thermal camera were used to visualize the motion of the compressed hot air as it traveled from the nozzle to the sheet. The results showed that the CSPIF technique allowed for the precise shaping of the polycarbonate sheet with minimal springback. However, minor deviations from the designed profile were observed, primarily at the starting point of the nozzle, which can be attributed to the bending effects of the sample. In addition, the occurrence of sheet thinning and material buildup on the deformed workpiece was also observed. The average surface roughness (Ra) of the deformed workpiece was measured to be 0.2871 microns.
{"title":"Hot-Air Contactless Single-Point Incremental Forming","authors":"Mohammad Almadani, Ahmet Guner, Hany Hassanin, Khamis Essa","doi":"10.3390/jmmp7050179","DOIUrl":"https://doi.org/10.3390/jmmp7050179","url":null,"abstract":"Single-point incremental forming (SPIF) has emerged as a time-efficient approach that offers increased material formability compared to conventional sheet-metal forming techniques. However, the physical interaction between the forming tool and the sheet poses challenges, such as tool wear and formability limits. This study introduces a novel sheet-forming technique called contactless single-point incremental forming (CSPIF), which uses hot compressed air as a deformation tool, eliminating the requirement for physical interaction between the sheet and a rigid forming tool. In this study, a polycarbonate sheet was chosen as the case-study material and subjected to the developed CSPIF. The experiments were carried out at an air temperature of 160 °C, air pressure of 1 bar, a nozzle speed of 750 mm/min, and a step-down thickness of 0.75 mm. A Schlieren setup and a thermal camera were used to visualize the motion of the compressed hot air as it traveled from the nozzle to the sheet. The results showed that the CSPIF technique allowed for the precise shaping of the polycarbonate sheet with minimal springback. However, minor deviations from the designed profile were observed, primarily at the starting point of the nozzle, which can be attributed to the bending effects of the sample. In addition, the occurrence of sheet thinning and material buildup on the deformed workpiece was also observed. The average surface roughness (Ra) of the deformed workpiece was measured to be 0.2871 microns.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134977182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulo Matheus Borges Esteves, Micha Hensen, Michal Kuffa, Konrad Wegener
This study presents a comprehensive investigation and modeling of the ignition delay time (td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy, and piece height on the stochastic distributions of td, providing important insights into the complex properties of these distributions. Observations indicate that these parameters exert significant yet intricate influences on td, with a particular emphasis on the gap distance. A critical value was identified, around 8μm to 10μm, that divides the stochastic behavior. To capture the binomial nature of td, a mixture probability model consisting of two Weibull distribution curves was developed and validated through extensive experimentation and a data analysis. The model demonstrated strong agreement with observed cumulative probability curves, indicating its accuracy and reliability in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the challenges and importance of careful parameter selection in control of WEDM processes. The findings of this study contribute to a deeper understanding of WEDM processes and provide a modeling approach for predicting td. Future research directions include refining the model by incorporating additional input parameters, investigating the influence of other process variables on td.
{"title":"Ignition Delay Time Modeling in Wire-EDM","authors":"Paulo Matheus Borges Esteves, Micha Hensen, Michal Kuffa, Konrad Wegener","doi":"10.3390/jmmp7050177","DOIUrl":"https://doi.org/10.3390/jmmp7050177","url":null,"abstract":"This study presents a comprehensive investigation and modeling of the ignition delay time (td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy, and piece height on the stochastic distributions of td, providing important insights into the complex properties of these distributions. Observations indicate that these parameters exert significant yet intricate influences on td, with a particular emphasis on the gap distance. A critical value was identified, around 8μm to 10μm, that divides the stochastic behavior. To capture the binomial nature of td, a mixture probability model consisting of two Weibull distribution curves was developed and validated through extensive experimentation and a data analysis. The model demonstrated strong agreement with observed cumulative probability curves, indicating its accuracy and reliability in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the challenges and importance of careful parameter selection in control of WEDM processes. The findings of this study contribute to a deeper understanding of WEDM processes and provide a modeling approach for predicting td. Future research directions include refining the model by incorporating additional input parameters, investigating the influence of other process variables on td.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135407873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Guillermo Díaz-Rodríguez, Alberto David Pertuz-Comas, Oscar Rodolfo Bohórquez-Becerra
This paper shows how temperature influences impact energy for continuous fiber additively manufactured (AM) polymer matrix composites. AM composites were fabricated with a nylon-based matrix and four continuous reinforcements: fiberglass, high-temperature fiberglass (HSHT), Kevlar, and carbon. The tested temperatures ranged from −40 to 90 °C. The chosen printed configuration for the lattice structure and fiber volume was the configuration that was found to perform the best in the literature, with a volumetric fiber content of 24.2%. Impact tests showed that the best response was fiberglass, HSHT, Kevlar, and carbon, in that order. The impact resistance was lowered at temperatures below ambient temperatures and above 50 °C. Additionally, each material’s impact energy was adjusted to third-degree polynomials to model results, with correlation factors above 92%. Finally, the failure analysis showed the damage mechanisms of matrix cracking, delamination in the printing direction, fiber tearing, and fiber pulling as failure mechanisms.
{"title":"Impact Strength for 3D-Printed PA6 Polymer Composites under Temperature Changes","authors":"Jorge Guillermo Díaz-Rodríguez, Alberto David Pertuz-Comas, Oscar Rodolfo Bohórquez-Becerra","doi":"10.3390/jmmp7050178","DOIUrl":"https://doi.org/10.3390/jmmp7050178","url":null,"abstract":"This paper shows how temperature influences impact energy for continuous fiber additively manufactured (AM) polymer matrix composites. AM composites were fabricated with a nylon-based matrix and four continuous reinforcements: fiberglass, high-temperature fiberglass (HSHT), Kevlar, and carbon. The tested temperatures ranged from −40 to 90 °C. The chosen printed configuration for the lattice structure and fiber volume was the configuration that was found to perform the best in the literature, with a volumetric fiber content of 24.2%. Impact tests showed that the best response was fiberglass, HSHT, Kevlar, and carbon, in that order. The impact resistance was lowered at temperatures below ambient temperatures and above 50 °C. Additionally, each material’s impact energy was adjusted to third-degree polynomials to model results, with correlation factors above 92%. Finally, the failure analysis showed the damage mechanisms of matrix cracking, delamination in the printing direction, fiber tearing, and fiber pulling as failure mechanisms.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Warm forming is widely used to enhance the formability of aluminum alloy sheets. In warm deep drawing, the process variables significantly affect frictional characteristics at the tool–blank interface. It has been a conventional approach to use a constant value of friction coefficients in the finite element (FE) simulations. However, this can occasionally result in suboptimal accuracy of the predictions. In the present work, strip drawing tests were carried out on AA5182 aluminum alloy sheets to investigate the effect of important process variables, namely, temperature, contact pressure, and drawing speed, on the friction coefficient in the warm forming temperature range (100–250 °C) under lubricated condition. The results obtained from the strip drawing tests were used for defining the friction conditions in the simulation of warm deep drawing of cylindrical cups incorporating the variation of the friction coefficient with contact pressure and speed at different temperatures. The Barlat89 yield criterion was used to define the effect of anisotropy in the material. The Voce hardening law and Cowper–Symonds model were used to incorporate the effect of strain hardening and strain rate, respectively, in the simulation. Drawability and peak force were compared with the predictions when a constant friction coefficient was assumed. Warm deep drawing experiments were conducted to validate the predicted drawability and load–displacement curves. It is clearly observed that the accuracy of prediction of the limiting drawing ratio and peak load through simulations is improved by incorporating the effect of pressure and speed on friction coefficient as it captures the local variations of friction during warm deep drawing precisely, rather than assuming a constant average friction coefficient at all the tool–blank contact areas.
{"title":"Effect of Process Variables on Interface Friction Characteristics in Strip Drawing of AA 5182 Alloy and Its Formability in Warm Deep Drawing","authors":"Archit Shrivastava, Ravi Kumar Digavalli","doi":"10.3390/jmmp7050175","DOIUrl":"https://doi.org/10.3390/jmmp7050175","url":null,"abstract":"Warm forming is widely used to enhance the formability of aluminum alloy sheets. In warm deep drawing, the process variables significantly affect frictional characteristics at the tool–blank interface. It has been a conventional approach to use a constant value of friction coefficients in the finite element (FE) simulations. However, this can occasionally result in suboptimal accuracy of the predictions. In the present work, strip drawing tests were carried out on AA5182 aluminum alloy sheets to investigate the effect of important process variables, namely, temperature, contact pressure, and drawing speed, on the friction coefficient in the warm forming temperature range (100–250 °C) under lubricated condition. The results obtained from the strip drawing tests were used for defining the friction conditions in the simulation of warm deep drawing of cylindrical cups incorporating the variation of the friction coefficient with contact pressure and speed at different temperatures. The Barlat89 yield criterion was used to define the effect of anisotropy in the material. The Voce hardening law and Cowper–Symonds model were used to incorporate the effect of strain hardening and strain rate, respectively, in the simulation. Drawability and peak force were compared with the predictions when a constant friction coefficient was assumed. Warm deep drawing experiments were conducted to validate the predicted drawability and load–displacement curves. It is clearly observed that the accuracy of prediction of the limiting drawing ratio and peak load through simulations is improved by incorporating the effect of pressure and speed on friction coefficient as it captures the local variations of friction during warm deep drawing precisely, rather than assuming a constant average friction coefficient at all the tool–blank contact areas.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}