Pub Date : 2022-01-01DOI: 10.1007/s40097-021-00446-1
Navid Rabiee, Mojtaba Bagherzadeh, Amir Mohammad Ghadiri, Mahsa Kiani, Sepideh Ahmadi, Vahid Jajarmi, Yousef Fatahi, Abdullah Aldhaher, Mohammadreza Tahriri, Thomas J Webster, Ebrahim Mostafavi
There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan).
Supplementary information: The online version contains supplementary material available at 10.1007/s40097-021-00446-1.
{"title":"Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery.","authors":"Navid Rabiee, Mojtaba Bagherzadeh, Amir Mohammad Ghadiri, Mahsa Kiani, Sepideh Ahmadi, Vahid Jajarmi, Yousef Fatahi, Abdullah Aldhaher, Mohammadreza Tahriri, Thomas J Webster, Ebrahim Mostafavi","doi":"10.1007/s40097-021-00446-1","DOIUrl":"https://doi.org/10.1007/s40097-021-00446-1","url":null,"abstract":"<p><p>There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using <i>Salvia hispanica</i> to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan).</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40097-021-00446-1.</p>","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 5","pages":"919-932"},"PeriodicalIF":10.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10646080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/s40097-021-00465-y
Jaison Jeevanandam, Saravanan Krishnan, Yiik Siang Hii, Sharadwata Pan, Yen San Chan, Caleb Acquah, Michael K Danquah, João Rodrigues
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
{"title":"Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites.","authors":"Jaison Jeevanandam, Saravanan Krishnan, Yiik Siang Hii, Sharadwata Pan, Yen San Chan, Caleb Acquah, Michael K Danquah, João Rodrigues","doi":"10.1007/s40097-021-00465-y","DOIUrl":"https://doi.org/10.1007/s40097-021-00465-y","url":null,"abstract":"<p><p>Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 5","pages":"809-831"},"PeriodicalIF":10.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10699078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-23DOI: 10.1007/s40097-021-00459-w
Ann Mariella Babu, Rijo Rajeev, Ditto Abraham Thadathil, A. Varghese, G. Hegde
{"title":"Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications","authors":"Ann Mariella Babu, Rijo Rajeev, Ditto Abraham Thadathil, A. Varghese, G. Hegde","doi":"10.1007/s40097-021-00459-w","DOIUrl":"https://doi.org/10.1007/s40097-021-00459-w","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 1","pages":"765 - 807"},"PeriodicalIF":10.1,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41334811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-10DOI: 10.1007/s40097-021-00453-2
Zahra Samavati, A. Samavati, A. Ismail, T. Borhani, M. Velashjerdi, B. G. Eisaabadi, A. Rostami, M. Othman, A. Awang
{"title":"Enhancement of organic solar cell efficiency by altering the zinc oxide photoanode nanostructure morphology","authors":"Zahra Samavati, A. Samavati, A. Ismail, T. Borhani, M. Velashjerdi, B. G. Eisaabadi, A. Rostami, M. Othman, A. Awang","doi":"10.1007/s40097-021-00453-2","DOIUrl":"https://doi.org/10.1007/s40097-021-00453-2","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 1","pages":"1119 - 1130"},"PeriodicalIF":10.1,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41664039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-31DOI: 10.1007/s40097-021-00454-1
Caiwei Wang, Jianfeng Huang, Jiayin Li, Liyun Cao, Rong Lang, K. Kajiyoshi
{"title":"Equal contents of intrinsic defects and oxygen-containing defects promote carbon electrodes to achieve high sulfur loads","authors":"Caiwei Wang, Jianfeng Huang, Jiayin Li, Liyun Cao, Rong Lang, K. Kajiyoshi","doi":"10.1007/s40097-021-00454-1","DOIUrl":"https://doi.org/10.1007/s40097-021-00454-1","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"13 1","pages":"67-78"},"PeriodicalIF":10.1,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42637882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-28DOI: 10.1007/s40097-021-00456-z
K. Dave, V. Gomes
{"title":"Bioresorbable poly(lactic acid) and organic quantum dot-based nanocomposites: luminescent scaffolds for enhanced osteogenesis and real-time monitoring","authors":"K. Dave, V. Gomes","doi":"10.1007/s40097-021-00456-z","DOIUrl":"https://doi.org/10.1007/s40097-021-00456-z","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 1","pages":"951-962"},"PeriodicalIF":10.1,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49170882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-16DOI: 10.1007/s40097-021-00455-0
Chunqin Zhao, T. Jing, Jing-zhi Tian, Jiang Guo, Min Wu, Danni Shi, Zhiyuan Zhao, Zhanhu Guo
{"title":"Visible light-driven photoelectrochemical enzyme biosensor based on reduced graphene oxide/titania for detection of glucose","authors":"Chunqin Zhao, T. Jing, Jing-zhi Tian, Jiang Guo, Min Wu, Danni Shi, Zhiyuan Zhao, Zhanhu Guo","doi":"10.1007/s40097-021-00455-0","DOIUrl":"https://doi.org/10.1007/s40097-021-00455-0","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 1","pages":"193 - 205"},"PeriodicalIF":10.1,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41958864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-14DOI: 10.1007/s40097-021-00450-5
Maryam Mousapour, F. Shirini
{"title":"Synthesis of benzothiazole and benzimidazole derivatives via an eco-friendly method using piperazine immobilized on nano-ZnO-sulfuric acid as a powerful catalyst","authors":"Maryam Mousapour, F. Shirini","doi":"10.1007/s40097-021-00450-5","DOIUrl":"https://doi.org/10.1007/s40097-021-00450-5","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"13 1","pages":"405 - 422"},"PeriodicalIF":10.1,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43179575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-13DOI: 10.1007/s40097-021-00449-y
S. Nangare, Sayali R. Patil, A. G. Patil, Z. Khan, Prashant K. Deshmukh, R. Tade, Mahendra R. Mahajan, S. Bari, P. Patil
{"title":"Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects","authors":"S. Nangare, Sayali R. Patil, A. G. Patil, Z. Khan, Prashant K. Deshmukh, R. Tade, Mahendra R. Mahajan, S. Bari, P. Patil","doi":"10.1007/s40097-021-00449-y","DOIUrl":"https://doi.org/10.1007/s40097-021-00449-y","url":null,"abstract":"","PeriodicalId":16377,"journal":{"name":"Journal of Nanostructure in Chemistry","volume":"12 1","pages":"729 - 764"},"PeriodicalIF":10.1,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45194248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}