Pub Date : 2025-06-01Epub Date: 2025-04-17DOI: 10.1080/02652048.2025.2490033
Khaled E Abuelella, Hend Abd-Allah, Sara M Soliman, Mona M A Abdel-Mottaleb
Aim: The current study aimed to develop and evaluate Etoricoxib (ETX) loaded polyelectrolyte microparticles (PEMPs) for intra-articular delivery in osteoarthritis management.
Methods: PEMPs were prepared by the electrostatic interactions between hyaluronic acid (HA) and chitosan (CS). The optimum formulation was characterized for encapsulation efficiency, particle size (PS), zeta potential (ZP), drug release, stability, TEM, FTIR, DSC and in vivo anti-inflammatory activity.
Results: The optimum formulation (ME4/TPP0.25) demonstrated spherical particles with a PS of 1.56 ± 0.04 µm, a PDI value of 0.29 ± 0.05, ZP of +35.26 ± 0.9 mV, and EE% of 94.7 ± 0.24% and loading capacity of 11.7 ± 0.16% (w/w). In vivo studies demonstrated that ME4/TPP0.25 significantly suppressed knee joint swelling, and significantly reduced the levels of catabolic and inflammatory mediators (ALP and IL-6) compared to drug alone.
Conclusion: These results suggest that the optimum ETX-loaded PEMPs could be a promising formulation for knee osteoarthritis management.
{"title":"Intra-articular treatment of osteoarthritis using novel biocompatible etoricoxib chitosan-hyaluronate hybrid microparticles.","authors":"Khaled E Abuelella, Hend Abd-Allah, Sara M Soliman, Mona M A Abdel-Mottaleb","doi":"10.1080/02652048.2025.2490033","DOIUrl":"10.1080/02652048.2025.2490033","url":null,"abstract":"<p><strong>Aim: </strong>The current study aimed to develop and evaluate Etoricoxib (ETX) loaded polyelectrolyte microparticles (PEMPs) for intra-articular delivery in osteoarthritis management.</p><p><strong>Methods: </strong>PEMPs were prepared by the electrostatic interactions between hyaluronic acid (HA) and chitosan (CS). The optimum formulation was characterized for encapsulation efficiency, particle size (PS), zeta potential (ZP), drug release, stability, TEM, FTIR, DSC and in vivo anti-inflammatory activity.</p><p><strong>Results: </strong>The optimum formulation (ME4/TPP0.25) demonstrated spherical particles with a PS of 1.56 ± 0.04 µm, a PDI value of 0.29 ± 0.05, ZP of +35.26 ± 0.9 mV, and EE% of 94.7 ± 0.24% and loading capacity of 11.7 ± 0.16% (w/w). In vivo studies demonstrated that ME4/TPP0.25 significantly suppressed knee joint swelling, and significantly reduced the levels of catabolic and inflammatory mediators (ALP and IL-6) compared to drug alone.</p><p><strong>Conclusion: </strong>These results suggest that the optimum ETX-loaded PEMPs could be a promising formulation for knee osteoarthritis management.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"421-435"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144007151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-04-10DOI: 10.1080/02652048.2025.2487034
Muhammad Ahsan Waqar, Iqra Noor Khan, Shabab Zahra, Farwa Shaheen, Saba Noureen, Shakeel Ahmad, Muhammad Irfan Siddique, Muhammad Nadeem Alvi
Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and in-vitro drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). In-vitro drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.
{"title":"β-Cyclodextrin-functionalized nanocarriers for bromocriptine: development, evaluation and histopathological studies.","authors":"Muhammad Ahsan Waqar, Iqra Noor Khan, Shabab Zahra, Farwa Shaheen, Saba Noureen, Shakeel Ahmad, Muhammad Irfan Siddique, Muhammad Nadeem Alvi","doi":"10.1080/02652048.2025.2487034","DOIUrl":"10.1080/02652048.2025.2487034","url":null,"abstract":"<p><p>Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and <i>in-vitro</i> drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). <i>In-vitro</i> drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"406-420"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143988501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-23DOI: 10.1080/02652048.2025.2480598
Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos, Jafar Ai, M S Nourbakhsh
Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.
{"title":"Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management.","authors":"Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos, Jafar Ai, M S Nourbakhsh","doi":"10.1080/02652048.2025.2480598","DOIUrl":"10.1080/02652048.2025.2480598","url":null,"abstract":"<p><p>Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"313-336"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-27DOI: 10.1080/02652048.2025.2483805
Marwa G Zaima, Shadeed Gad, Hany M Ibrahim
Aim: This study aimed to develop glibenclamide (GLC)-loaded nanosponges (NS) using β-cyclodextrin to improve dissolution rate and oral bioavailability of GLC.
Methods: Blank NS were produced using solvent technique with varying ratios of β-cyclodextrin and carbonyl-diimidazole. The hyper-crosslinked β-cyclodextrin was dispersed in de-ionized water, and then lyophilised. The GLC-loaded-NS were prepared using different ratios of GLC to the previously developed NS1:4 and evaluated for particle size, zeta potential, TEM, SEM, DSC, PXRD, FTIR, loading efficiency, pharmacokinetically, pharmacodynamically, histologically and effect of storage.
Results: GLC:NS1:4 showed highest solubility (46.36 ± 2.44%w/v), entrapment efficiency (36.1 ± 0.57%w/v), particle size 352 ± 6.1 nm and Z-potential -25.3 ± 0.3 mV. GLC:NS1:4 exhibited porous, spherical nanoparticles, with confirmed drug encapsulation. In-vitro and in-vivo evaluations demonstrated an initial burst followed by sustained drug release, reducing blood glucose levels by 79.6 ± 0.43%. The effect of storage revealed no significant changes after 3 months.
Conclusion: GLC-NS complexation improved oral bioavailability and extended drug release, suggesting better patient compliance.
{"title":"<i>In vitro</i> and <i>in vivo</i> PK/PD evaluation of glibenclamide nanosponges.","authors":"Marwa G Zaima, Shadeed Gad, Hany M Ibrahim","doi":"10.1080/02652048.2025.2483805","DOIUrl":"10.1080/02652048.2025.2483805","url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop glibenclamide (GLC)-loaded nanosponges (NS) using β-cyclodextrin to improve dissolution rate and oral bioavailability of GLC.</p><p><strong>Methods: </strong>Blank NS were produced using solvent technique with varying ratios of β-cyclodextrin and carbonyl-diimidazole. The hyper-crosslinked β-cyclodextrin was dispersed in de-ionized water, and then lyophilised. The GLC-loaded-NS were prepared using different ratios of GLC to the previously developed NS<sub>1:4</sub> and evaluated for particle size, zeta potential, TEM, SEM, DSC, PXRD, FTIR, loading efficiency, pharmacokinetically, pharmacodynamically, histologically and effect of storage.</p><p><strong>Results: </strong>GLC:NS<sub>1:4</sub> showed highest solubility (46.36 ± 2.44%w/v), entrapment efficiency (36.1 ± 0.57%w/v), particle size 352 ± 6.1 nm and Z-potential -25.3 ± 0.3 mV. GLC:NS<sub>1:4</sub> exhibited porous, spherical nanoparticles, with confirmed drug encapsulation. In-vitro and in-vivo evaluations demonstrated an initial burst followed by sustained drug release, reducing blood glucose levels by 79.6 ± 0.43%. The effect of storage revealed no significant changes after 3 months.</p><p><strong>Conclusion: </strong>GLC-NS complexation improved oral bioavailability and extended drug release, suggesting better patient compliance.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"352-367"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-04-04DOI: 10.1080/02652048.2025.2487033
Cláudio Carvalho Santana Júnior, Anamaria Mendonça Santos, Ana Maria Santos Oliveira, José Adão Carvalho Nascimento Júnior, Laurent Picot, Luiza Abrahão Frank, Paula Dos Passos Menezes, Izabel Almeida Alves, Mairim Russo Serafini
Antimicrobial resistance (AMR) is a critical public health concern that arises when microorganisms evolve mechanisms to evade the effects of antibiotics, thereby rendering conventional treatments ineffective. This growing challenge underscores the urgent need for novel therapeutic approaches. Nanotechnology, particularly when combined with environmentally sustainable practices such as green synthesis, reduces the use of toxic substances and minimises waste, offering a promising solution. This review explores the green synthesis of antimicrobial nanoparticles using flavonoids-natural compounds with substantial biological activity-as reducing and stabilising agents. By systematically analysing articles from PubMed, Scopus, Web of Science, and Embase, 10 key studies were identified. The primary nanoparticles examined were metallic, including silver, gold, copper, and metallic, which demonstrated notable efficacy against pathogens such as S. aureus, E. coli, and P. aeruginosa. The results support that green-synthesised nanoparticles represent a viable strategy to combat AMR, offering an effective and eco-friendly alternative for developing antimicrobial agents.
抗菌素耐药性(AMR)是一个重要的公共卫生问题,当微生物进化出逃避抗生素影响的机制,从而使常规治疗无效时,就会出现这种情况。这一日益严峻的挑战凸显了对新型治疗方法的迫切需求。纳米技术,特别是与诸如绿色合成等环境可持续的做法相结合时,减少了有毒物质的使用并最大限度地减少了废物,提供了一个有希望的解决方案。本文综述了利用黄酮类化合物(具有丰富生物活性的天然化合物)作为还原剂和稳定剂的抗菌纳米颗粒的绿色合成。通过系统分析来自PubMed、Scopus、Web of Science和Embase的文章,确定了10项关键研究。主要检测的纳米颗粒是金属的,包括银、金、铜和金属,它们对金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等病原体有显著的疗效。这些结果支持绿色合成纳米颗粒代表了一种对抗抗菌素耐药性的可行策略,为开发抗菌剂提供了一种有效和环保的替代方案。
{"title":"Green synthesis of antimicrobial nanotechnology using flavonoids: a systematic review.","authors":"Cláudio Carvalho Santana Júnior, Anamaria Mendonça Santos, Ana Maria Santos Oliveira, José Adão Carvalho Nascimento Júnior, Laurent Picot, Luiza Abrahão Frank, Paula Dos Passos Menezes, Izabel Almeida Alves, Mairim Russo Serafini","doi":"10.1080/02652048.2025.2487033","DOIUrl":"10.1080/02652048.2025.2487033","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a critical public health concern that arises when microorganisms evolve mechanisms to evade the effects of antibiotics, thereby rendering conventional treatments ineffective. This growing challenge underscores the urgent need for novel therapeutic approaches. Nanotechnology, particularly when combined with environmentally sustainable practices such as green synthesis, reduces the use of toxic substances and minimises waste, offering a promising solution. This review explores the green synthesis of antimicrobial nanoparticles using flavonoids-natural compounds with substantial biological activity-as reducing and stabilising agents. By systematically analysing articles from PubMed, Scopus, Web of Science, and Embase, 10 key studies were identified. The primary nanoparticles examined were metallic, including silver, gold, copper, and metallic, which demonstrated notable efficacy against pathogens such as <i>S. aureus</i>, <i>E. coli</i>, and <i>P. aeruginosa</i>. The results support that green-synthesised nanoparticles represent a viable strategy to combat AMR, offering an effective and eco-friendly alternative for developing antimicrobial agents.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"392-405"},"PeriodicalIF":3.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-04-02DOI: 10.1080/02652048.2025.2482048
DaІia E Gaber, Alanood S Almurshedi, Basmah N Aldosari, Samiah Alhabardi, Randa M Zaki, Mahasen A Radwan, Xien Chen
Aims: This study aimed to enhance the bioavailability and therapeutic efficacy of lamotrigine (LMG), an antiepileptic drug with low solubility, by formulating it into a nasal nanoemulsion (NE) for effective epilepsy control.
Methods: LMG was incorporated into a nasal nanoemulsion (LMG-NE) using a 32 factorial design via spontaneous emulsification method. LMG-NEs were characterised for drug loading (DL), entrapment efficiency (EE%), particle size, microscopic examination, rheological profile, phosphatidylcholine liposome uptake, in vitro release, anticonvulsant activity, and in vivo pharmacokinetics.
Results: The optimal formulation exhibited a DL of 79.03 ± 0.5 (w/w), an EE% of 80.2 ± 3.0%, a mean diameter of 182.78 ± 22.76 nm, and a zeta potential of 0.60 ± 0.04 mV. LMG was rapidly released, with 91.87% ± 4.54% of drug was released within 2 hours. The area under the curve (AUC0-24) showed a 1.84-fold increase compared to standard formulations.
Conclusion: LMG-NE presents a promising alternative for epilepsy treatment, potentially reducing peripheral side effects and improving therapeutic outcomes.
{"title":"Design, in vitro, and in vivo evaluation of a new nanoemulsion gel of lamotrigine for application via nasal route.","authors":"DaІia E Gaber, Alanood S Almurshedi, Basmah N Aldosari, Samiah Alhabardi, Randa M Zaki, Mahasen A Radwan, Xien Chen","doi":"10.1080/02652048.2025.2482048","DOIUrl":"10.1080/02652048.2025.2482048","url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to enhance the bioavailability and therapeutic efficacy of lamotrigine (LMG), an antiepileptic drug with low solubility, by formulating it into a nasal nanoemulsion (NE) for effective epilepsy control.</p><p><strong>Methods: </strong>LMG was incorporated into a nasal nanoemulsion (LMG-NE) using a 3<sup>2</sup> factorial design via spontaneous emulsification method. LMG-NEs were characterised for drug loading (DL), entrapment efficiency (EE%), particle size, microscopic examination, rheological profile, phosphatidylcholine liposome uptake, in vitro release, anticonvulsant activity, and in vivo pharmacokinetics.</p><p><strong>Results: </strong>The optimal formulation exhibited a DL of 79.03 ± 0.5 (w/w), an EE% of 80.2 ± 3.0%, a mean diameter of 182.78 ± 22.76 nm, and a zeta potential of 0.60 ± 0.04 mV. LMG was rapidly released, with 91.87% ± 4.54% of drug was released within 2 hours. The area under the curve (AUC<sub>0-24</sub>) showed a 1.84-fold increase compared to standard formulations.</p><p><strong>Conclusion: </strong>LMG-NE presents a promising alternative for epilepsy treatment, potentially reducing peripheral side effects and improving therapeutic outcomes.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"337-351"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
{"title":"An update on nanoformulations with FDA approved drugs for female reproductive cancer.","authors":"Mahima Raj, Abha Meena, Richa Seth, Anurag Mathur, Suaib Luqman","doi":"10.1080/02652048.2025.2474457","DOIUrl":"10.1080/02652048.2025.2474457","url":null,"abstract":"<p><p>Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"266-299"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, antineoplastic effects of a novel soy lecithin-based phytosome drug delivery system containing Barleria lupulina Lindl. extract (BLSP) was evaluated. BLSP was prepared using the thin-film hydration method and analysed using energy-dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, and Zetasizer technique. Phytosomes showed a mean-diameter of 135 ± 0.29 nm, zeta potential of -56 ± 1.16 mV, and entrapment efficiency of 57.24 ± 0.12%. The drug release profiles exhibited a two-phase pattern with a protracted and sustained release after the first release. BLSP had a cytotoxic potential against MCF-7 breast and HeLa cervical cancers and demonstrated a concentration-dependent reduction of reactive oxygen species and mitochondrial membrane potential. BLSP caused upregulation of B-cell lymphoma-2-associated-X protein, caspase-8, caspase-9, and cluster of differentiation-95, and downregulation of B-cell lymphoma-2. The in vivo toxicity study showed the safety of BLSP. Overall, BLSP has demonstrated potential as a promising formulation for delivering B. lupulina phytoconstituents to treat breast and cervical cancer.
在这项研究中,新的大豆卵磷脂为基础的植物体药物传递系统含有狼疮芽孢杆菌的抗肿瘤作用。提取液(BLSP)进行评价。采用薄膜水化法制备了BLSP,并利用能量色散x射线能谱、扫描电镜、x射线衍射和Zetasizer技术对其进行了分析。磷脂质体的平均直径为135±0.29 nm, zeta电位为-56±1.16 mV,包封效率为57.24±0.12%。药物释放表现为两相模式,一次释放后缓释和缓释。BLSP对MCF-7乳腺癌和HeLa宫颈癌具有细胞毒性,并显示出浓度依赖性的活性氧和线粒体膜电位的降低。BLSP引起b细胞淋巴瘤-2相关- x蛋白、caspase-8、caspase-9、cluster of differentiation-95上调,b细胞淋巴瘤-2下调。体内毒性研究表明BLSP是安全的。总的来说,BLSP已被证明有潜力作为一种有前途的配方,提供螺旋藻植物成分治疗乳腺癌和宫颈癌。
{"title":"Preparation, characterisation, anticancer potential and safety evaluation of a soy lecithin phytosome delivery system loaded with constituents from <i>Barleria lupulina</i>.","authors":"Sabyasachi Banerjee, Shibangi Mukhopadhyay, Avik Das, Subhasis Banerjee, Sankhadip Bose, Santanu Banerjee, Nicolette Casarcia, Anupam Bishayee","doi":"10.1080/02652048.2025.2467046","DOIUrl":"10.1080/02652048.2025.2467046","url":null,"abstract":"<p><p>In this study, antineoplastic effects of a novel soy lecithin-based phytosome drug delivery system containing <i>Barleria lupulina</i> Lindl. extract (BLSP) was evaluated. BLSP was prepared using the thin-film hydration method and analysed using energy-dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, and Zetasizer technique. Phytosomes showed a mean-diameter of 135 ± 0.29 nm, zeta potential of -56 ± 1.16 mV, and entrapment efficiency of 57.24 ± 0.12%. The drug release profiles exhibited a two-phase pattern with a protracted and sustained release after the first release. BLSP had a cytotoxic potential against MCF-7 breast and HeLa cervical cancers and demonstrated a concentration-dependent reduction of reactive oxygen species and mitochondrial membrane potential. BLSP caused upregulation of B-cell lymphoma-2-associated-X protein, caspase-8, caspase-9, and cluster of differentiation-95, and downregulation of B-cell lymphoma-2. The <i>in vivo</i> toxicity study showed the safety of BLSP. Overall, BLSP has demonstrated potential as a promising formulation for delivering <i>B. lupulina</i> phytoconstituents to treat breast and cervical cancer.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"209-229"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-02-24DOI: 10.1080/02652048.2025.2469259
Nadhir N A Jafar, Junainah Abd Hamid, Farag M A Altalbawy, Pawan Sharma, Abhishek Kumar, Shirin Shomurotova, Rafid Jihad Albadr, Kamil K Atiyah Altameemi, Hawraa Mahdi Saleh, Fakhri Alajeeli, Ahmed Mohammed Ahmed, Irfan Ahmad, Imad Ibrahim Dawood
Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.
{"title":"Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics.","authors":"Nadhir N A Jafar, Junainah Abd Hamid, Farag M A Altalbawy, Pawan Sharma, Abhishek Kumar, Shirin Shomurotova, Rafid Jihad Albadr, Kamil K Atiyah Altameemi, Hawraa Mahdi Saleh, Fakhri Alajeeli, Ahmed Mohammed Ahmed, Irfan Ahmad, Imad Ibrahim Dawood","doi":"10.1080/02652048.2025.2469259","DOIUrl":"10.1080/02652048.2025.2469259","url":null,"abstract":"<p><p>Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"239-265"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-04-14DOI: 10.1080/02652048.2024.2423629
Huili Yang, Yujun An, Juan Meng, Xiaomei Lv
Aim: The study aims to fabricate and evaluate Nano-ceria encapsulated oleic acid (CeO2 NPs-OA) to treat gestational diabetes mellitus (GDM).
Methods: The CeO2 NPs was synthesised by thermal decomposition. TEM, XRD, and FTIR confirms particles. In vitro studies on STZ-induced NIH 3T3 assessed antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. In vivo studies were performed on pregnant mice induced with STZ, examined antidiabetic activity, oxidative stress, and dyslipidemia.
Results: The CeO2 NPs-OA had a spherical structure and uniform distribution. A PDI of 0.5 with a zeta-potential of - 44 ± 2 mV. The DPPH and ABTS exhibit 40% and 39.21% antioxidant activity. The CeO2 NPs-OA inhibits diabetes at 500 μg/mL. The in vivo studies confirmed the reduction in oxidative stress by reducing MDA (p < 0.05). The histopathological analysis of the STZ-induced model shows capillary, which CeO2 NPs-OA reduced.
Conclusion: CeO2 NPs-OA shows promise for treating GDM and improving maternal and foetal health.
{"title":"Fabrication of nano-ceria encapsulated with oleic acid to attenuate gestational diabetes mellitus in streptozotocin-induced diabetic pregnant mice model.","authors":"Huili Yang, Yujun An, Juan Meng, Xiaomei Lv","doi":"10.1080/02652048.2024.2423629","DOIUrl":"10.1080/02652048.2024.2423629","url":null,"abstract":"<p><strong>Aim: </strong>The study aims to fabricate and evaluate Nano-ceria encapsulated oleic acid (CeO<sub>2</sub> NPs-OA) to treat gestational diabetes mellitus (GDM).</p><p><strong>Methods: </strong>The CeO<sub>2</sub> NPs was synthesised by thermal decomposition. TEM, XRD, and FTIR confirms particles. <i>In vitro</i> studies on STZ-induced NIH 3T3 assessed antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. <i>In vivo</i> studies were performed on pregnant mice induced with STZ, examined antidiabetic activity, oxidative stress, and dyslipidemia.</p><p><strong>Results: </strong>The CeO<sub>2</sub> NPs-OA had a spherical structure and uniform distribution. A PDI of 0.5 with a zeta-potential of - 44 ± 2 mV. The DPPH and ABTS exhibit 40% and 39.21% antioxidant activity. The CeO<sub>2</sub> NPs-OA inhibits diabetes at 500 μg/mL. The <i>in vivo</i> studies confirmed the reduction in oxidative stress by reducing MDA <i>(p < 0.05)</i>. The histopathological analysis of the STZ-induced model shows capillary, which CeO<sub>2</sub> NPs-OA reduced.</p><p><strong>Conclusion: </strong>CeO<sub>2</sub> NPs-OA shows promise for treating GDM and improving maternal and foetal health.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"191-208"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}