This study aims to investigate Polylactic Acid (PLA) and Polycaprolactone (PCL) polymers for microencapsulation of hydrophilic and hydrophobic anti-glaucoma drugs using an emulsion-based solvent evaporation technique. Microparticle size was analysed using optical microscopy, while drug-polymer interactions through Dynamic-Light-Scattering (DLS) and Fourier-Transform-Infra-red/Attenuated-Total-Reflection spectroscopy (FTIR/ATR). In vitro, drug release studies were performed to investigate drug encapsulation and release profiles. Spherical microparticles, with particle size 94 ± 6.9 μm for PCL-based and 100 ± 3.74 μm for PLA-based formulation, were obtained. Drug release studies showed 100% release over about 32 days, with encapsulation efficiency (%EE) and drug loading (%w/w) reaching up to 95 and 2.84% for PLA-based and 97 and 2.91% for PCL-based microparticles, respectively. DLS studies reveal an increase in hydrodynamic radius (RH), which correlates to enhanced drug encapsulation. So, the nature of the drug and polymer significantly impacts drug encapsulation and release, with drug-polymer interactions playing a crucial role alongside experimental parameters.
{"title":"A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs.","authors":"Subrat Kumar Panigrahi, Sougat Das, Saptarshi Majumdar","doi":"10.1080/02652048.2024.2423631","DOIUrl":"10.1080/02652048.2024.2423631","url":null,"abstract":"<p><p>This study aims to investigate Polylactic Acid (PLA) and Polycaprolactone (PCL) polymers for microencapsulation of hydrophilic and hydrophobic anti-glaucoma drugs using an emulsion-based solvent evaporation technique. Microparticle size was analysed using optical microscopy, while drug-polymer interactions through Dynamic-Light-Scattering (DLS) and Fourier-Transform-Infra-red/Attenuated-Total-Reflection spectroscopy (FTIR/ATR). <i>In vitro</i>, drug release studies were performed to investigate drug encapsulation and release profiles. Spherical microparticles, with particle size 94 ± 6.9 μm for PCL-based and 100 ± 3.74 μm for PLA-based formulation, were obtained. Drug release studies showed 100% release over about 32 days, with encapsulation efficiency (%EE) and drug loading (%w/w) reaching up to 95 and 2.84% for PLA-based and 97 and 2.91% for PCL-based microparticles, respectively. DLS studies reveal an increase in hydrodynamic radius (<i>R<sub>H</sub></i>), which correlates to enhanced drug encapsulation. So, the nature of the drug and polymer significantly impacts drug encapsulation and release, with drug-polymer interactions playing a crucial role alongside experimental parameters.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"804-817"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-26DOI: 10.1080/02652048.2024.2418606
Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón
This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.
{"title":"Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin.","authors":"Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón","doi":"10.1080/02652048.2024.2418606","DOIUrl":"10.1080/02652048.2024.2418606","url":null,"abstract":"<p><p>This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"739-753"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D3 (Vit-D3).
Methods: Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D3 release from the emulsions.
Results: The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D3 retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period.
Conclusion: Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D3.
{"title":"Physicochemical stability and controlled release of vitamin D<sub>3</sub>-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates.","authors":"Farzaneh Kouravand, Fakhri Shahidi, Milad Fathi, Arash Koocheki, Sahar Roshanak","doi":"10.1080/02652048.2024.2418615","DOIUrl":"10.1080/02652048.2024.2418615","url":null,"abstract":"<p><strong>Aim: </strong>The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D<sub>3</sub> (Vit-D<sub>3</sub>).</p><p><strong>Methods: </strong>Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D<sub>3</sub> release from the emulsions.</p><p><strong>Results: </strong>The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D<sub>3</sub> retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period.</p><p><strong>Conclusion: </strong>Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D<sub>3</sub>.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"770-781"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.
{"title":"Dermal drug delivery <i>via</i> bilosomes: a synergistic integration for better therapeutic outcomes.","authors":"Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar","doi":"10.1080/02652048.2024.2423618","DOIUrl":"10.1080/02652048.2024.2423618","url":null,"abstract":"<p><p>The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"818-831"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-25DOI: 10.1080/02652048.2024.2407373
Mariam Zewail
Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.
来氟米特(LEF)是一种著名的改善病情抗风湿药(DMARDs),于 1998 年获准用于类风湿关节炎(RA)的治疗。它在体内通过酶促作用转化为活性代谢物特立氟胺(TER)。LEF 和 TER 对多种疾病具有药理作用,包括多发性硬化症、癌症、病毒感染和脑神经行为障碍。尽管具有上述药理作用,但在纳米医学应用中对这些作用的探索主要集中在 RA 和癌症治疗方面。本综述总结了 LEF 的主要药理作用和药代动力学效应,并重点介绍了 LEF 及其代谢物在不同疾病中的纳米封装应用。
{"title":"Leflunomide nanocarriers: a new prospect of therapeutic applications.","authors":"Mariam Zewail","doi":"10.1080/02652048.2024.2407373","DOIUrl":"10.1080/02652048.2024.2407373","url":null,"abstract":"<p><p>Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"715-738"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-02DOI: 10.1080/02652048.2024.2386287
Sahar M AlMotwaa, Waad A Al-Otaibi
Aim: This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines.
Methods: A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection.
Results: Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed.
Conclusion: The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.
{"title":"Nano-emulsion based on <i>Santolina chamaecyparissus</i> essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: an <i>in vitro</i> study.","authors":"Sahar M AlMotwaa, Waad A Al-Otaibi","doi":"10.1080/02652048.2024.2386287","DOIUrl":"10.1080/02652048.2024.2386287","url":null,"abstract":"<p><strong>Aim: </strong>This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of <i>Santolina chamaecyparissus</i> L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines.</p><p><strong>Methods: </strong>A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in <i>in vitro</i> tests for apoptosis detection.</p><p><strong>Results: </strong>Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed.</p><p><strong>Conclusion: </strong>The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"503-518"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-04DOI: 10.1080/02652048.2024.2395976
Hany G Attia, Maha E Elmataeeshy, Mohamed Aleraky, Samar R Saleh, Doaa A Ghareeb, Maha A El Demellawy, Hanan M El-Nahas, Tarek M Ibrahim
The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and in-vitro release were estimated. In-vitro pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with Cmax values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.
{"title":"The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative <i>in-vivo</i> studies in rats.","authors":"Hany G Attia, Maha E Elmataeeshy, Mohamed Aleraky, Samar R Saleh, Doaa A Ghareeb, Maha A El Demellawy, Hanan M El-Nahas, Tarek M Ibrahim","doi":"10.1080/02652048.2024.2395976","DOIUrl":"10.1080/02652048.2024.2395976","url":null,"abstract":"<p><p>The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and <i>in-vitro</i> release were estimated. <i>In-vitro</i> pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with C<sub>max</sub> values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"576-600"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim(s): This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in Abelmoschus esculentus plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis.
Methods: MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. In-vitro efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers.
Results: Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. In-vivo data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min.
Conclusion: MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.
{"title":"Nanoparticles encapsulated in <i>Abelmoschus esculentus</i> polysaccharide-based pellets as colon targeting approach.","authors":"Akshita Arora, Anshul Sharma, Shamsher Singh, Rajveer Singh, Amrinder Singh, Dipti Kakkar, Nitin Sharma","doi":"10.1080/02652048.2024.2390951","DOIUrl":"10.1080/02652048.2024.2390951","url":null,"abstract":"<p><strong>Aim(s): </strong>This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in <i>Abelmoschus esculentus</i> plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis.</p><p><strong>Methods: </strong>MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. <i>In-vitro</i> efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers.</p><p><strong>Results: </strong>Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. <i>In-vivo</i> data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min.</p><p><strong>Conclusion: </strong>MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"519-534"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-29DOI: 10.1080/02652048.2024.2394884
{"title":"Correction.","authors":"","doi":"10.1080/02652048.2024.2394884","DOIUrl":"10.1080/02652048.2024.2394884","url":null,"abstract":"","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"679-680"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-05DOI: 10.1080/02652048.2024.2386278
Nazia Tarannum, Manvi Singh
This article provides a brief description of microcapsule self-healing technique and its potential use in concrete structures. Because concrete is readily available and reasonably priced, it is widely utilised in the building industry globally, despite its susceptibility to the formation of cracks. The longevity and security of concrete buildings are greatly impacted by the existence of cracks and other deterioration occurring during the course of their use. Through the encapsulation of healing material inside microcapsules, which shows rupture upon cracking in cement-based materials, the microcapsule exhibits promise in accomplishing self-healing and increasing durability and strength in the structures. The article first explains the basic ideas behind the science of microcapsule self-healing and then looks at different ways to prepare microcapsules. It also looks into how adding microcapsules affects the basic characteristics of the concrete building. A summary of the efficiency and self-healing mechanisms of microcapsules is also provided.
{"title":"Self-healing microcapsule - a way towards futuristic cement: an-up-to-date-review.","authors":"Nazia Tarannum, Manvi Singh","doi":"10.1080/02652048.2024.2386278","DOIUrl":"10.1080/02652048.2024.2386278","url":null,"abstract":"<p><p>This article provides a brief description of microcapsule self-healing technique and its potential use in concrete structures. Because concrete is readily available and reasonably priced, it is widely utilised in the building industry globally, despite its susceptibility to the formation of cracks. The longevity and security of concrete buildings are greatly impacted by the existence of cracks and other deterioration occurring during the course of their use. Through the encapsulation of healing material inside microcapsules, which shows rupture upon cracking in cement-based materials, the microcapsule exhibits promise in accomplishing self-healing and increasing durability and strength in the structures. The article first explains the basic ideas behind the science of microcapsule self-healing and then looks at different ways to prepare microcapsules. It also looks into how adding microcapsules affects the basic characteristics of the concrete building. A summary of the efficiency and self-healing mechanisms of microcapsules is also provided.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"620-648"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}