Pub Date : 2024-08-28DOI: 10.1016/j.yjmcc.2024.08.006
Stefano Quarta , Giuseppe Santarpino , Maria Annunziata Carluccio , Nadia Calabriso , Francesco Cardetta , Laura Siracusa , Tonia Strano , Ilaria Palamà , Gabriella Leccese , Francesco Visioli , Marika Massaro
A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.
更好地了解心脏脂肪库的病理生理学对于描述它们在心血管疾病发展中的作用至关重要。为此,我们开发了一种从心包脂肪组织(PAT)中分离成熟脂肪细胞的方法。通过酶分离法,我们成功地获得了成熟脂肪细胞以及基质血管部分(SVF)的相应细胞。我们对 PAT 脂肪细胞进行了全面的形态和分子鉴定,包括详细的脂肪酸谱分析,并同时研究了它们对外界刺激的反应性。我们的方法得到了高度纯化的脂肪细胞,它们在移植后的 72 小时内仍具有持续的存活能力。值得注意的是,这些脂肪细胞对包括促炎和新陈代谢刺激在内的多种挑战做出了反应,这表明它们具有引发促炎反应和调节内皮细胞行为的潜力。此外,我们还创造了条件,在培养过程中维持整个 PAT,并保持其活力和对外部刺激的反应性。细胞恢复的高效性与最小的去分化相结合,凸显了它未来作为个性化工具用于筛选和评估个体患者对药物、补充剂或营养保健品的反应的前景。
{"title":"Cardiac fat adipocytes: An optimized protocol for isolation of ready-to-use mature adipocytes from human pericardial adipose tissue","authors":"Stefano Quarta , Giuseppe Santarpino , Maria Annunziata Carluccio , Nadia Calabriso , Francesco Cardetta , Laura Siracusa , Tonia Strano , Ilaria Palamà , Gabriella Leccese , Francesco Visioli , Marika Massaro","doi":"10.1016/j.yjmcc.2024.08.006","DOIUrl":"10.1016/j.yjmcc.2024.08.006","url":null,"abstract":"<div><p>A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"196 ","pages":"Pages 12-25"},"PeriodicalIF":4.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.yjmcc.2024.08.002
Mitchell Beito , Heinrich Taegtmeyer
It is still debated whether changes in metabolic flux are cause or consequence of contractile dysfunction in non-ischemic heart disease. We have previously proposed a model of cardiac metabolism grounded in a series of six moiety-conserved, interconnected cycles. In view of a recent interest to augment oxygen availability in heart failure through iron supplementation, we integrated this intervention in terms of moiety conservation. Examining published work from both human and murine models, we argue this strategy restores a mitochondrial cycle of energy transfer by enhancing mitochondrial pyruvate carrier (MPC) expression and providing pyruvate as a substrate for carboxylation and anaplerosis. Metabolomic data from failing heart muscle reveal elevated pyruvate levels with a concomitant decrease in the levels of Krebs cycle intermediates. Additionally, MPC is downregulated in the same failing hearts, as well as under hypoxic conditions. MPC expression increases upon mechanical unloading in the failing human heart, as does contractile function. We note that MPC deficiency also alters expression of enzymes involved in pyruvate carboxylation and decarboxylation, increases intermediates of biosynthetic pathways, and eventually leads to cardiac hypertrophy and dilated cardiomyopathy. Collectively, we propose that an unbroken chain of moiety-conserved cycles facilitates energy transfer in the heart. We refer to the transport and subsequent carboxylation of pyruvate in the mitochondrial matrix as an example and a proposed target for metabolic support to reverse impaired contractile function.
{"title":"Metabolic cycles: A unifying concept for energy transfer in the heart","authors":"Mitchell Beito , Heinrich Taegtmeyer","doi":"10.1016/j.yjmcc.2024.08.002","DOIUrl":"10.1016/j.yjmcc.2024.08.002","url":null,"abstract":"<div><p>It is still debated whether changes in metabolic flux are cause or consequence of contractile dysfunction in non-ischemic heart disease. We have previously proposed a model of cardiac metabolism grounded in a series of six moiety-conserved, interconnected cycles. In view of a recent interest to augment oxygen availability in heart failure through iron supplementation, we integrated this intervention in terms of moiety conservation. Examining published work from both human and murine models, we argue this strategy restores a mitochondrial cycle of energy transfer by enhancing mitochondrial pyruvate carrier (MPC) expression and providing pyruvate as a substrate for carboxylation and anaplerosis. Metabolomic data from failing heart muscle reveal elevated pyruvate levels with a concomitant decrease in the levels of Krebs cycle intermediates. Additionally, MPC is downregulated in the same failing hearts, as well as under hypoxic conditions. MPC expression increases upon mechanical unloading in the failing human heart, as does contractile function. We note that MPC deficiency also alters expression of enzymes involved in pyruvate carboxylation and decarboxylation, increases intermediates of biosynthetic pathways, and eventually leads to cardiac hypertrophy and dilated cardiomyopathy. Collectively, we propose that an unbroken chain of moiety-conserved cycles facilitates energy transfer in the heart. We refer to the transport and subsequent carboxylation of pyruvate in the mitochondrial matrix as an example and a proposed target for metabolic support to reverse impaired contractile function.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 103-109"},"PeriodicalIF":4.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.yjmcc.2024.08.004
Chak Kwong Cheng, Yu Huang
As the innermost monolayer of the vasculature, endothelial cells (ECs) serve as the interface for multiplex signal transduction. Directly exposed to blood-borne factors, both endogenous and exogenous, ECs actively mediate vascular homeostasis and represent a therapeutic target against cardiometabolic diseases. ECs act as the first-line gateway between gut-derived substances and vasculature. Additionally, ECs convert blood flow-exerted hemodynamic forces into downstream biochemical signaling to modulate vascular pathophysiology. Besides, ECs can sense other forms of stimuli, like cell extrusion, thermal stimulation, photostimulation, radiation, magnetic field, noise, and gravity. Future efforts are still needed to deepen our understanding on endothelial biology.
{"title":"Vascular endothelium: The interface for multiplex signal transduction","authors":"Chak Kwong Cheng, Yu Huang","doi":"10.1016/j.yjmcc.2024.08.004","DOIUrl":"10.1016/j.yjmcc.2024.08.004","url":null,"abstract":"<div><p>As the innermost monolayer of the vasculature, endothelial cells (ECs) serve as the interface for multiplex signal transduction. Directly exposed to blood-borne factors, both endogenous and exogenous, ECs actively mediate vascular homeostasis and represent a therapeutic target against cardiometabolic diseases. ECs act as the first-line gateway between gut-derived substances and vasculature. Additionally, ECs convert blood flow-exerted hemodynamic forces into downstream biochemical signaling to modulate vascular pathophysiology. Besides, ECs can sense other forms of stimuli, like cell extrusion, thermal stimulation, photostimulation, radiation, magnetic field, noise, and gravity. Future efforts are still needed to deepen our understanding on endothelial biology.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 97-102"},"PeriodicalIF":4.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.yjmcc.2024.08.003
Dihan Fan , Rongxue Wu
Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.
{"title":"Mechanisms of the septic heart: From inflammatory response to myocardial edema","authors":"Dihan Fan , Rongxue Wu","doi":"10.1016/j.yjmcc.2024.08.003","DOIUrl":"10.1016/j.yjmcc.2024.08.003","url":null,"abstract":"<div><p>Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 73-82"},"PeriodicalIF":4.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific Atg7 knockout (Atg7cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence via downregulation of Atg7 was also observed in chimeric Atg7 cardiac-specific KO mice and cultured cardiomyocytes in vitro, suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in Atg7cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where reactivation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.
衰老是心脏病(包括缺血性心脏病和心力衰竭)的一个重要风险因素。细胞衰老以 DNA 损伤、抗凋亡和衰老相关分泌表型(SASP)为特征,发生在包括心肌细胞在内的许多细胞类型中。衰老通过旁分泌机制促进周围细胞和器官的衰老过程。在心脏衰老过程中,以非选择性方式降解细胞膜物质的普遍自噬作用会减弱。这种减少会导致细胞质量控制机制恶化,促进衰老,并对包括小鼠在内的动物的寿命产生负面影响。虽然抑制普遍的自噬会促进衰老,但自噬的抑制是否会直接刺激心肌细胞的衰老,进而促进心脏的心肌功能障碍,目前仍不清楚。我们利用丧失自噬功能的小鼠模型解决了这一问题。抑制心脏特异性 Atg7 基因敲除(Atg7cKO)小鼠的一般自噬功能会导致衰老心肌细胞的积累。在嵌合Atg7心脏特异性KO小鼠和体外培养的心肌细胞中也观察到了通过下调Atg7诱导衰老的现象,这表明抑制自噬诱导衰老的效应是细胞自主的。ABT-263是一种衰老溶解剂,它能减少Atg7cKO小鼠衰老心肌细胞的数量并改善其心脏功能。在多柔比星处理的心脏中也观察到了抑制自噬和诱导衰老的现象,自噬的重新激活缓解了心肌细胞的衰老和心脏功能障碍。这些结果表明,抑制一般自噬可直接诱导心肌细胞衰老,进而促进心脏功能障碍。
{"title":"Suppression of autophagy induces senescence in the heart","authors":"Peiyong Zhai, Eun-Ah Sung, Yuka Shiheido-Watanabe, Koichiro Takayama, Yimin Tian, Junichi Sadoshima","doi":"10.1016/j.yjmcc.2024.08.001","DOIUrl":"10.1016/j.yjmcc.2024.08.001","url":null,"abstract":"<div><p>Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific <em>Atg7</em> knockout (<em>Atg7</em>cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence <em>via</em> downregulation of <em>Atg7</em> was also observed in chimeric <em>Atg7</em> cardiac-specific KO mice and cultured cardiomyocytes <em>in vitro</em>, suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in <em>Atg7</em>cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where reactivation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 83-96"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022282824001287/pdfft?md5=b380ca83875f8fd7a8252e530ed3f75c&pid=1-s2.0-S0022282824001287-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.yjmcc.2024.07.008
Matthew A. Walker, Rong Tian
Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.
{"title":"NAD metabolism and heart failure: Mechanisms and therapeutic potentials","authors":"Matthew A. Walker, Rong Tian","doi":"10.1016/j.yjmcc.2024.07.008","DOIUrl":"10.1016/j.yjmcc.2024.07.008","url":null,"abstract":"<div><p>Nicotinamide adenine dinucleotide provides the critical redox pair, NAD<sup>+</sup> and NADH, for cellular energy metabolism. In addition, NAD<sup>+</sup> is the precursor for de novo NADP<sup>+</sup> synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD<sup>+</sup> level and altered NAD<sup>+</sup>/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD<sup>+</sup> consumption or promote NAD<sup>+</sup> production have repleted intracellular NAD<sup>+</sup> or normalized NAD<sup>+</sup>/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD<sup>+</sup> elevating therapy. Mechanisms for the benefit of boosting NAD<sup>+</sup> level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD<sup>+</sup> elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 45-54"},"PeriodicalIF":4.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.yjmcc.2024.07.011
Yan Li , Ya-Ting Chen , Jia-Sheng Liu , Kai-Feng Liang , Yuan-Kai Song , Yang Cao , Cai-Yun Chen , Yu-Peng Jian , Xiao-Jun Liu , Ying-Qi Xu , Hao-Xiang Yuan , Zhi-Jun Ou , Jing-Song Ou
Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between “oncoprotein-induced transcript 3 protein (OIT3) positive” circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The “OIT3 positive” EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.
{"title":"Oncoprotein-induced transcript 3 protein-enriched extracellular vesicles promotes NLRP3 ubiquitination to alleviate acute lung injury after cardiac surgery","authors":"Yan Li , Ya-Ting Chen , Jia-Sheng Liu , Kai-Feng Liang , Yuan-Kai Song , Yang Cao , Cai-Yun Chen , Yu-Peng Jian , Xiao-Jun Liu , Ying-Qi Xu , Hao-Xiang Yuan , Zhi-Jun Ou , Jing-Song Ou","doi":"10.1016/j.yjmcc.2024.07.011","DOIUrl":"10.1016/j.yjmcc.2024.07.011","url":null,"abstract":"<div><p>Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between “oncoprotein-induced transcript 3 protein (OIT3) positive” circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI <em>in vivo</em> and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The “OIT3 positive” EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 55-67"},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-28DOI: 10.1016/j.yjmcc.2024.07.009
Manuel Göz , Greta Pohl , Sylvia M. Steinecker , Volker Walhorn , Hendrik Milting , Dario Anselmetti
Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene and in the DSC2-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski's equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.
{"title":"Arrhythmogenic cardiomyopathy-related cadherin variants affect desmosomal binding kinetics","authors":"Manuel Göz , Greta Pohl , Sylvia M. Steinecker , Volker Walhorn , Hendrik Milting , Dario Anselmetti","doi":"10.1016/j.yjmcc.2024.07.009","DOIUrl":"10.1016/j.yjmcc.2024.07.009","url":null,"abstract":"<div><p>Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the <em>DSG2</em>-gene and in the <em>DSC2</em>-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski's equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 36-44"},"PeriodicalIF":4.9,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022282824001251/pdfft?md5=ddd7c4601e26596aa4cb66c3774559d7&pid=1-s2.0-S0022282824001251-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.yjmcc.2024.07.007
Jasmine Mertens , Willem J. De Lange , Emily T. Farrell , Ella C. Harbaugh , Angeela Gauchan , Daniel P. Fitzsimons , Richard L. Moss , J. Carter Ralphe
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
{"title":"The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium","authors":"Jasmine Mertens , Willem J. De Lange , Emily T. Farrell , Ella C. Harbaugh , Angeela Gauchan , Daniel P. Fitzsimons , Richard L. Moss , J. Carter Ralphe","doi":"10.1016/j.yjmcc.2024.07.007","DOIUrl":"10.1016/j.yjmcc.2024.07.007","url":null,"abstract":"<div><p>Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model<em>.</em> We crossed heterozygous W792R<sup>WR</sup> mice to produce homozygous mutant W792R<sup>RR</sup>, heterozygous W792R<sup>WR</sup><sub>,</sub> and control W792R<sup>WW</sup> mice. W792R<sup>RR</sup> mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792R<sup>WW</sup>, W792R<sup>WR</sup> and W792R<sup>RR</sup> mice and is properly incorporated into the sarcomere. Heterozygous W792R<sup>WR</sup> mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792R<sup>RR</sup> mice showed increased Ca<sup>2+</sup> sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca<sup>2+</sup> sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 14-23"},"PeriodicalIF":4.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.yjmcc.2024.07.006
Aaron D. Kaplan , Liron Boyman , Christopher W. Ward , W. Jonathan Lederer , Maura Greiser
Heart Failure with preserved ejection fraction (HFpEF) has a high rate of sudden cardiac death (SCD) and empirical treatment is ineffective. We developed a novel preclinical model of metabolic HFpEF that presents with stress-induced ventricular tachycardia (VT). Mechanistically, we discovered arrhythmogenic changes in intracellular Ca2+ handling distinct from the changes pathognomonic for heart failure with reduced ejection fraction. We further show that dantrolene, a stabilizer of the ryanodine receptor Ca2+ channel, attenuates HFpEF-associated arrhythmogenic Ca2+ handling in vitro and suppresses stress-induced VT in vivo. We propose ryanodine receptor stabilization as a mechanistic approach to mitigation of malignant VT in metabolic HFpEF.
{"title":"Ryanodine receptor stabilization therapy suppresses Ca2+- based arrhythmias in a novel model of metabolic HFpEF","authors":"Aaron D. Kaplan , Liron Boyman , Christopher W. Ward , W. Jonathan Lederer , Maura Greiser","doi":"10.1016/j.yjmcc.2024.07.006","DOIUrl":"10.1016/j.yjmcc.2024.07.006","url":null,"abstract":"<div><p>Heart Failure with preserved ejection fraction (HFpEF) has a high rate of sudden cardiac death (SCD) and empirical treatment is ineffective. We developed a novel preclinical model of metabolic HFpEF that presents with stress-induced ventricular tachycardia (VT). Mechanistically, we discovered arrhythmogenic changes in intracellular Ca<sup>2+</sup> handling distinct from the changes pathognomonic for heart failure with reduced ejection fraction. We further show that dantrolene, a stabilizer of the ryanodine receptor Ca<sup>2+</sup> channel, attenuates HFpEF-associated arrhythmogenic Ca<sup>2+</sup> handling <em>in vitro</em> and suppresses stress<em>-</em>induced VT <em>in vivo</em>. We propose ryanodine receptor stabilization as a mechanistic approach to mitigation of malignant VT in metabolic HFpEF.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"195 ","pages":"Pages 68-72"},"PeriodicalIF":4.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022282824001226/pdfft?md5=9d6a1f3a7c8870076c1bfc36db23a01e&pid=1-s2.0-S0022282824001226-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}