Pub Date : 2019-09-25DOI: 10.1142/s2251237319500035
Samiha Hakkar, S. Achache, F. Sanchette, Z. Mekhalif, N. Kamoun, A. Boumaza
The microstructural change of a thermal oxidation on a PM2000 superalloy was investigated after a 48 h isothermal heat-treatment. The oxides (transitions aluminas, [Formula: see text]-alumina and mixed oxides) were characterized using the Raman spectroscopy, the Photoluminescence (PL) spectroscopy, MEB observations and the X-ray diffraction for temperatures between 600°C and 1200°C. The X-ray diffraction results under conventional incidence conditions make it possible to estimate the crystallites size and the specific surfaces of the [Formula: see text]-alumina. The PL analyses at various excitation wavelengths (200[Formula: see text]nm, 234[Formula: see text]nm, 326[Formula: see text]nm and 532[Formula: see text]nm) provide important information on the existing defects (intrinsic and extrinsic) according to the oxidation temperature. The Raman spectroscopy ([Formula: see text].18[Formula: see text]nm) gives the various signatures of the various alumina generated ([Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]-Al2O3).
{"title":"Characterization by Photoluminescence and Raman Spectroscopy of the Oxide Scales Grown on the PM2000 at High Temperatures","authors":"Samiha Hakkar, S. Achache, F. Sanchette, Z. Mekhalif, N. Kamoun, A. Boumaza","doi":"10.1142/s2251237319500035","DOIUrl":"https://doi.org/10.1142/s2251237319500035","url":null,"abstract":"The microstructural change of a thermal oxidation on a PM2000 superalloy was investigated after a 48 h isothermal heat-treatment. The oxides (transitions aluminas, [Formula: see text]-alumina and mixed oxides) were characterized using the Raman spectroscopy, the Photoluminescence (PL) spectroscopy, MEB observations and the X-ray diffraction for temperatures between 600°C and 1200°C. The X-ray diffraction results under conventional incidence conditions make it possible to estimate the crystallites size and the specific surfaces of the [Formula: see text]-alumina. The PL analyses at various excitation wavelengths (200[Formula: see text]nm, 234[Formula: see text]nm, 326[Formula: see text]nm and 532[Formula: see text]nm) provide important information on the existing defects (intrinsic and extrinsic) according to the oxidation temperature. The Raman spectroscopy ([Formula: see text].18[Formula: see text]nm) gives the various signatures of the various alumina generated ([Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]-Al2O3).","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41905892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-23DOI: 10.1142/S2251237319500011
Kaory Barrientos Urdinola, Paula Andrea Marín Muñoz, Pedronel Araque Marín, Marisol Jaramillo Grajales
The biological sensing interface on the active area of a piezo transducer is responsible for the sensitivity, specificity, reusability, and reproducibility of these devices. Among the approaches used to functionalize piezo transducers, mixed self-assembled monolayers (MSAMs) are one of the most successful, given that they allow the obtaining of semi-crystalline molecular arrays and the arrangement of a bioreceptor on the surface. But, to deploy MSAMs on a substrate effectively, one must optimize and characterize the structural ratio between them and the bioreceptor. In this paper, we developed a molecular model of the interaction between Bovine Serum Albumin (BSA) and MSAMs-functionalized gold substrates. First, we evaluated the conditions for the functionalization of the substrates and found that a 50:1 16-mercaptohexadecaonic acid (MHDA) to 11 mercapto-1-undecanol (MUA) ratio produced the best features on the surface. We also evaluated the specific conditions to immobilize BSA on MSAMs (using the afore-established ratio) via Atomic Force Microscopy (AFM), and then on a 10[Formula: see text]MHz quartz crystal microbalance (QCM), and with the data obtained we concluded that a structural ratio of 0.005 (MSAM/BSA) is obtained when 1[Formula: see text][Formula: see text]M MHDA and 200[Formula: see text][Formula: see text]g/mL BSA were used, provided the most suitable conditions for the functionalization of a piezo transducer.
{"title":"In-Silico Prediction on the MSAMS-Assisted Immobilization of Bovine Serum Albumin on 10MHz Piezoelectric Immunosensors","authors":"Kaory Barrientos Urdinola, Paula Andrea Marín Muñoz, Pedronel Araque Marín, Marisol Jaramillo Grajales","doi":"10.1142/S2251237319500011","DOIUrl":"https://doi.org/10.1142/S2251237319500011","url":null,"abstract":"The biological sensing interface on the active area of a piezo transducer is responsible for the sensitivity, specificity, reusability, and reproducibility of these devices. Among the approaches used to functionalize piezo transducers, mixed self-assembled monolayers (MSAMs) are one of the most successful, given that they allow the obtaining of semi-crystalline molecular arrays and the arrangement of a bioreceptor on the surface. But, to deploy MSAMs on a substrate effectively, one must optimize and characterize the structural ratio between them and the bioreceptor. In this paper, we developed a molecular model of the interaction between Bovine Serum Albumin (BSA) and MSAMs-functionalized gold substrates. First, we evaluated the conditions for the functionalization of the substrates and found that a 50:1 16-mercaptohexadecaonic acid (MHDA) to 11 mercapto-1-undecanol (MUA) ratio produced the best features on the surface. We also evaluated the specific conditions to immobilize BSA on MSAMs (using the afore-established ratio) via Atomic Force Microscopy (AFM), and then on a 10[Formula: see text]MHz quartz crystal microbalance (QCM), and with the data obtained we concluded that a structural ratio of 0.005 (MSAM/BSA) is obtained when 1[Formula: see text][Formula: see text]M MHDA and 200[Formula: see text][Formula: see text]g/mL BSA were used, provided the most suitable conditions for the functionalization of a piezo transducer.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237319500011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42412838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-23DOI: 10.1142/S2251237319500023
Nadir Lalou, A. Kadari
This work proposes the synthesis of nanocrystalline calcium oxide (CaO) pure and doped with different concentrations of lithium (Li[Formula: see text]) ions by sol–gel process. Calcium nitrate (Ca(NO[Formula: see text]4H2O; 99.99%) and lithium nitrate (LiNO3; 99.99%) were used as precursors. The synthesized powders were characterized by several techniques such as: UV-Vis transmission spectroscopy, Fourier Transform Infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD). The main objective of this paper is to study the influence of lithium (Li[Formula: see text] ratio) on the structural and optical properties of synthesized powders. The band gap values decreased with the increasing of Li[Formula: see text] ions in CaO lattice; the slight change in the band gap was directly related to the energy transfer between the CaO excited states and the 2s levels of Li[Formula: see text] ions. The influence of Li[Formula: see text] doping on the physical properties of CaO nanocrystalline will be studied for the first time in this work; no literature has previously published this kind of impurities.
{"title":"Influence of Li2+ Doping on the Structural and Optical Properties of CaO Synthesized by Sol–Gel Process","authors":"Nadir Lalou, A. Kadari","doi":"10.1142/S2251237319500023","DOIUrl":"https://doi.org/10.1142/S2251237319500023","url":null,"abstract":"This work proposes the synthesis of nanocrystalline calcium oxide (CaO) pure and doped with different concentrations of lithium (Li[Formula: see text]) ions by sol–gel process. Calcium nitrate (Ca(NO[Formula: see text]4H2O; 99.99%) and lithium nitrate (LiNO3; 99.99%) were used as precursors. The synthesized powders were characterized by several techniques such as: UV-Vis transmission spectroscopy, Fourier Transform Infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD). The main objective of this paper is to study the influence of lithium (Li[Formula: see text] ratio) on the structural and optical properties of synthesized powders. The band gap values decreased with the increasing of Li[Formula: see text] ions in CaO lattice; the slight change in the band gap was directly related to the energy transfer between the CaO excited states and the 2s levels of Li[Formula: see text] ions. The influence of Li[Formula: see text] doping on the physical properties of CaO nanocrystalline will be studied for the first time in this work; no literature has previously published this kind of impurities.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237319500023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49253406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-01DOI: 10.1142/s2251237319500096
N. Raghavendra, Deeksha S. Sheelimath, Soumya R. Chitnis
Corrosion protection of expired Atenolol drug on the Al in the 3[Formula: see text]M HCl was investigated through the weight loss, gasometric, Tafel plot, impedance, atomic absorption spectroscopy (AAS), quantum chemical, scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies. The addition of different concentrations of expired Atenolol drug enhances the protection efficiency. Gasometric technique was performed in order to study the variation in the amount of hydrogen gas in the presence and absence of the inhibitor. The potentiodynamic polarization plots show that the expired Atenolol drug acts as a mixed type. Data of impedance studies show that the charge transfer process controls the corrosion of Al in the 3[Formula: see text]M HCl medium. The SEM and AFM results explore that the expired Atenolol drug is a powerful corrosion inhibitor for the Al in HCl solution.
{"title":"Expired Atenolol Drug: A Nontoxic Corrosion Inhibitor for Al in 3 M HCl Pickling Environment","authors":"N. Raghavendra, Deeksha S. Sheelimath, Soumya R. Chitnis","doi":"10.1142/s2251237319500096","DOIUrl":"https://doi.org/10.1142/s2251237319500096","url":null,"abstract":"Corrosion protection of expired Atenolol drug on the Al in the 3[Formula: see text]M HCl was investigated through the weight loss, gasometric, Tafel plot, impedance, atomic absorption spectroscopy (AAS), quantum chemical, scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies. The addition of different concentrations of expired Atenolol drug enhances the protection efficiency. Gasometric technique was performed in order to study the variation in the amount of hydrogen gas in the presence and absence of the inhibitor. The potentiodynamic polarization plots show that the expired Atenolol drug acts as a mixed type. Data of impedance studies show that the charge transfer process controls the corrosion of Al in the 3[Formula: see text]M HCl medium. The SEM and AFM results explore that the expired Atenolol drug is a powerful corrosion inhibitor for the Al in HCl solution.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48508885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-01DOI: 10.1142/s2251237319500084
B. Benrabah, Hadj Benhebal, Abdelmalek Kharroubi, M. Touati
This work shows an investigation of tin-doped Mn2O3 thin layers synthesized via sol–gel process and deposited on glass substrates using dip-coating technique. The Sn concentration was changed from 0% to 9%. The obtained samples were characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Ultraviolet–Visible spectroscopy (UV–Vis) and impedance spectroscopy (IS). XRD showed that Mn2O3 was crystallized in the cubic form with directionally preferential orientation structure (222). The formation of Mn2O3 was also confirmed by FTIR spectroscopy. The optical transmittance of the samples is greater than 70% and increases following doping, while the band gap energy decreases with an increase in Sn doping concentration. Complex IS indicates that the resulting circuit is a parallel RpCp where Cp is the capacitance of the layer and Rp its resistance.
{"title":"Sol–Gel Preparation and Characterization of Tin-Doped Dimanganese Trioxide Thin Films","authors":"B. Benrabah, Hadj Benhebal, Abdelmalek Kharroubi, M. Touati","doi":"10.1142/s2251237319500084","DOIUrl":"https://doi.org/10.1142/s2251237319500084","url":null,"abstract":"This work shows an investigation of tin-doped Mn2O3 thin layers synthesized via sol–gel process and deposited on glass substrates using dip-coating technique. The Sn concentration was changed from 0% to 9%. The obtained samples were characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Ultraviolet–Visible spectroscopy (UV–Vis) and impedance spectroscopy (IS). XRD showed that Mn2O3 was crystallized in the cubic form with directionally preferential orientation structure (222). The formation of Mn2O3 was also confirmed by FTIR spectroscopy. The optical transmittance of the samples is greater than 70% and increases following doping, while the band gap energy decreases with an increase in Sn doping concentration. Complex IS indicates that the resulting circuit is a parallel RpCp where Cp is the capacitance of the layer and Rp its resistance.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47943499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-01DOI: 10.1142/s2251237319500072
Sudip Banerjee, S. Poria, G. Sutradhar, P. Sahoo
This work examines the effects of WC nanoparticles on nanohardness, elastic modulus and scratch-induced wear behavior of Mg-based metal matrix nanocomposites. Ultrasonic vibrator-equipped stir casting furnace is used to fabricate Mg–WC nanocomposites. Scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX) and X-ray diffraction (XRD) are employed to conduct the characterizations of base alloy and Mg–WC nanocomposites. Vickers microhardness tester is used to obtain the microhardness values of the fabricated materials. Nanoindentation tests are performed to find the effect of wt.% of WC on the mechanical properties, i.e., nanohardness and elastic modulus. Nanohardness and elastic modulus present nearly 122% and 169.37% increments, respectively, compared to the base alloy when only 2[Formula: see text]wt.% of WC is present as reinforcement. Scratch tests are performed to find the effects of wt.% of WC and applied load on the scratch-induced wear and coefficient of friction (CoF) of the base alloy and Mg–WC nanocomposites. Wear volume also decreases continuously with increase in the weight percentage of WC in magnesium alloy. The COFs of nanocomposites are almost constant but they are inclined to increase with the increase in wt.% of WC. Finally, SEM micrographs of scratch grooves are analyzed to find the wear mechanisms. Abrasive wear mechanism is found to be the dominant one regarding the scratch of Mg–WC nanocomposites.
{"title":"Nanoindentation and Scratch Resistance Characteristics of AZ31–WC Nanocomposites","authors":"Sudip Banerjee, S. Poria, G. Sutradhar, P. Sahoo","doi":"10.1142/s2251237319500072","DOIUrl":"https://doi.org/10.1142/s2251237319500072","url":null,"abstract":"This work examines the effects of WC nanoparticles on nanohardness, elastic modulus and scratch-induced wear behavior of Mg-based metal matrix nanocomposites. Ultrasonic vibrator-equipped stir casting furnace is used to fabricate Mg–WC nanocomposites. Scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX) and X-ray diffraction (XRD) are employed to conduct the characterizations of base alloy and Mg–WC nanocomposites. Vickers microhardness tester is used to obtain the microhardness values of the fabricated materials. Nanoindentation tests are performed to find the effect of wt.% of WC on the mechanical properties, i.e., nanohardness and elastic modulus. Nanohardness and elastic modulus present nearly 122% and 169.37% increments, respectively, compared to the base alloy when only 2[Formula: see text]wt.% of WC is present as reinforcement. Scratch tests are performed to find the effects of wt.% of WC and applied load on the scratch-induced wear and coefficient of friction (CoF) of the base alloy and Mg–WC nanocomposites. Wear volume also decreases continuously with increase in the weight percentage of WC in magnesium alloy. The COFs of nanocomposites are almost constant but they are inclined to increase with the increase in wt.% of WC. Finally, SEM micrographs of scratch grooves are analyzed to find the wear mechanisms. Abrasive wear mechanism is found to be the dominant one regarding the scratch of Mg–WC nanocomposites.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49030010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2251237318500053
R. Lianngenga, J. Lalvohbika, Lalawmpuia
The problem of incident plane waves at the interface of micropolar thermoelastic half-space with voids and micropolar elastic half-space with voids has been attempted. The amplitude and energy ratios of various reflected and refracted waves for the incident [Formula: see text]- and [Formula: see text]-waves are obtained with the help of appropriate boundary conditions at the interface. The effect of linear thermal expansion and microinertia on the amplitude and energy ratios due to the incident [Formula: see text]- and [Formula: see text]-waves are discussed. Numerically and analytically, these amplitude and energy ratios are computed to show the effect of linear thermal expansion and microinertia. It is observed that the effect of linear thermal expansion is less for incident [Formula: see text]-wave and the effect of microinertia is less for incident [Formula: see text]-wave.
{"title":"Refraction of P- and S-Wave at the Interface of Micropolar Elasticity and Thermoelasticity with Voids","authors":"R. Lianngenga, J. Lalvohbika, Lalawmpuia","doi":"10.1142/S2251237318500053","DOIUrl":"https://doi.org/10.1142/S2251237318500053","url":null,"abstract":"The problem of incident plane waves at the interface of micropolar thermoelastic half-space with voids and micropolar elastic half-space with voids has been attempted. The amplitude and energy ratios of various reflected and refracted waves for the incident [Formula: see text]- and [Formula: see text]-waves are obtained with the help of appropriate boundary conditions at the interface. The effect of linear thermal expansion and microinertia on the amplitude and energy ratios due to the incident [Formula: see text]- and [Formula: see text]-waves are discussed. Numerically and analytically, these amplitude and energy ratios are computed to show the effect of linear thermal expansion and microinertia. It is observed that the effect of linear thermal expansion is less for incident [Formula: see text]-wave and the effect of microinertia is less for incident [Formula: see text]-wave.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237318500053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41869710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2251237318500065
A. Zenkour
The thermoelastic problem of clamped axisymmetric infinite hollow cylinders under thermal shock with variable thermal conductivity is presented. The outer surface of infinite hollow cylinder is considered to be thermally insulated while inner surface is subjected to an initial heating source. In addition, the cylinder is considered to be clamped at its inner and outer radii. Generalized thermoelasticity theories are used to deal with the field quantities. All generalized thermoelasticity theories such as Green and Lindsay, Lord and Shulman, and coupled thermoelasticity (CTE) are considered as special cases of the present theory. Effects of variable thermal conductivity and time parameters on radial displacement, temperature, and stresses of the hollow cylinders are investigated.
{"title":"Generalized Thermoelasticity Theories for Axisymmetric Hollow Cylinders Under Thermal Shock with Variable Thermal Conductivity","authors":"A. Zenkour","doi":"10.1142/S2251237318500065","DOIUrl":"https://doi.org/10.1142/S2251237318500065","url":null,"abstract":"The thermoelastic problem of clamped axisymmetric infinite hollow cylinders under thermal shock with variable thermal conductivity is presented. The outer surface of infinite hollow cylinder is considered to be thermally insulated while inner surface is subjected to an initial heating source. In addition, the cylinder is considered to be clamped at its inner and outer radii. Generalized thermoelasticity theories are used to deal with the field quantities. All generalized thermoelasticity theories such as Green and Lindsay, Lord and Shulman, and coupled thermoelasticity (CTE) are considered as special cases of the present theory. Effects of variable thermal conductivity and time parameters on radial displacement, temperature, and stresses of the hollow cylinders are investigated.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237318500065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43968572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2251237318500077
Cesar A. Manrique-Bastidas, P. Sundaram, P. Resto, N. Mina-Camilde, S. Hernández‐Rivera
Raman scattering (RS) was used as a powerful, efficient, and sensitive technique for studying intermolecular interactions between an organic ligand adsorbate and a metallic substrate. Functionalization of titanium (TiO2[Formula: see text]Ti) surfaces was performed using lysine (Lys) as adsorbate and later developing a hydroxyapatite (HA) layer onto this functionalized surface. The functionalization process was performed at different pH values of the interacting chemical species. Chemisorption onto the TiO2Ti substrates through the Lys carboxylic group was demonstrated spectroscopically. Analysis of vibrational spectra showed that the CH side chain of Lys was relatively distant from the (TiO2[Formula: see text]Ti) surface, preventing direct contact with the surface. Additionally, the signals corresponding to the unbound [Formula: see text]-NH2 group indicate that it is available for additional complexation. In vitro bioactivity of the Lys–TiO2[Formula: see text]Ti surface was achieved by developing an HA layer onto already functionalized TiO2[Formula: see text]Ti surfaces at various pH values. Spectroscopic data using the spectral markers of HA and Lys provided a decisive role in establishing the necessary baseline data for evidencing the intermolecular bonding. The functionalized TiO2[Formula: see text]Ti surface reactivity is linked to the specific intermolecular interactions of –COO− (pH 7.0) with Ca[Formula: see text] ions, as well as the –COOH (pH 2.0 and 12.0) groups of Lys, with the –OH groups of PO[Formula: see text] belonging to HA.
{"title":"Functionalization of Titanium Surfaces with Lysine: A Micro Raman Study of the Intermolecular Interactions of Lysine-TiO2","authors":"Cesar A. Manrique-Bastidas, P. Sundaram, P. Resto, N. Mina-Camilde, S. Hernández‐Rivera","doi":"10.1142/S2251237318500077","DOIUrl":"https://doi.org/10.1142/S2251237318500077","url":null,"abstract":"Raman scattering (RS) was used as a powerful, efficient, and sensitive technique for studying intermolecular interactions between an organic ligand adsorbate and a metallic substrate. Functionalization of titanium (TiO2[Formula: see text]Ti) surfaces was performed using lysine (Lys) as adsorbate and later developing a hydroxyapatite (HA) layer onto this functionalized surface. The functionalization process was performed at different pH values of the interacting chemical species. Chemisorption onto the TiO2Ti substrates through the Lys carboxylic group was demonstrated spectroscopically. Analysis of vibrational spectra showed that the CH side chain of Lys was relatively distant from the (TiO2[Formula: see text]Ti) surface, preventing direct contact with the surface. Additionally, the signals corresponding to the unbound [Formula: see text]-NH2 group indicate that it is available for additional complexation. In vitro bioactivity of the Lys–TiO2[Formula: see text]Ti surface was achieved by developing an HA layer onto already functionalized TiO2[Formula: see text]Ti surfaces at various pH values. Spectroscopic data using the spectral markers of HA and Lys provided a decisive role in establishing the necessary baseline data for evidencing the intermolecular bonding. The functionalized TiO2[Formula: see text]Ti surface reactivity is linked to the specific intermolecular interactions of –COO− (pH 7.0) with Ca[Formula: see text] ions, as well as the –COOH (pH 2.0 and 12.0) groups of Lys, with the –OH groups of PO[Formula: see text] belonging to HA.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237318500077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47389981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-01DOI: 10.1142/S2251237318500028
B. M. Al-Shabander, A. A. Mohammed, A. Khalil
In this study, coal ash/recycled plastic composite material was fabricated with post-consumer high-density polyethylene (HDPE) and coal ash particles. The main idea of using coal ash, since it is a...
{"title":"Mechanical Properties and Thermal Conductivity of Coal Ash-Recycled High-Density Polyethylene Composite","authors":"B. M. Al-Shabander, A. A. Mohammed, A. Khalil","doi":"10.1142/S2251237318500028","DOIUrl":"https://doi.org/10.1142/S2251237318500028","url":null,"abstract":"In this study, coal ash/recycled plastic composite material was fabricated with post-consumer high-density polyethylene (HDPE) and coal ash particles. The main idea of using coal ash, since it is a...","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237318500028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46829824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}