Pub Date : 2023-01-27DOI: 10.1007/s10911-023-09528-y
Patrice M Witschen, Alexis K Elfstrum, Andrew C Nelson, Kathryn L Schwertfeger
The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.
{"title":"Characterization of Hyaluronan Localization in the Developing Mammary Gland and Mammary Tumors.","authors":"Patrice M Witschen, Alexis K Elfstrum, Andrew C Nelson, Kathryn L Schwertfeger","doi":"10.1007/s10911-023-09528-y","DOIUrl":"https://doi.org/10.1007/s10911-023-09528-y","url":null,"abstract":"<p><p>The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"28 1","pages":"1"},"PeriodicalIF":2.5,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9614989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-03DOI: 10.1007/s10911-022-09525-7
James L Miller, Matt Kanke, Gat Rauner, Kimaya M Bakhle, Praveen Sethupathy, Gerlinde R Van de Walle
Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.
{"title":"Comparative Analysis of microRNAs that Stratify in vitro Mammary stem and Progenitor Activity Reveals Functionality of Human miR-92b-3p.","authors":"James L Miller, Matt Kanke, Gat Rauner, Kimaya M Bakhle, Praveen Sethupathy, Gerlinde R Van de Walle","doi":"10.1007/s10911-022-09525-7","DOIUrl":"10.1007/s10911-022-09525-7","url":null,"abstract":"<p><p>Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 3-4","pages":"253-269"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10517154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1007/s10911-022-09527-5
Isabela F S Perossi, Mylena M Saito, Giovanna Rossi Varallo, Bianca Lara Venâncio de Godoy, Jucimara Colombo, Debora A P C Zuccari
Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.
{"title":"Protein Expression of PI3K/AKT/mTOR Pathway Targets Validated by Gene Expression and its Correlation with Prognosis in Canine Mammary Cancer.","authors":"Isabela F S Perossi, Mylena M Saito, Giovanna Rossi Varallo, Bianca Lara Venâncio de Godoy, Jucimara Colombo, Debora A P C Zuccari","doi":"10.1007/s10911-022-09527-5","DOIUrl":"https://doi.org/10.1007/s10911-022-09527-5","url":null,"abstract":"<p><p>Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 3-4","pages":"241-252"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10515942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-15DOI: 10.1007/s10911-022-09526-6
Alecia-Jane Twigger, Jakub Sumbal, Mohamed Bentires-Alj, Beatrice A Howard
The thirteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) Laboratories Annual Workshop took place on the 28-30 April 2022 in Weggis, Switzerland and focused on methods in mammary gland biology and breast cancer. Sixty scientists participated in the ENBDC annual workshop which had not been held in person since 2019 due to the global COVID-19 pandemic. Topics spanned the mammary gland biology field, ranging from lactation biology and embryonic development, single cell sequencing of the human breast, and stunning cutting-edge imaging of the mouse mammary gland and human breast as well as breast cancer research topics including invasive progression of the pre-invasive DCIS stage, metabolic determinants of endocrine therapy resistance, models for lobular breast cancer, and how mutational landscapes of normal breast during age and pregnancy determine cancer risk. The latest findings from participating researchers were presented through oral presentations and poster sessions and included plenty of unpublished work.
{"title":"Thirteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer.","authors":"Alecia-Jane Twigger, Jakub Sumbal, Mohamed Bentires-Alj, Beatrice A Howard","doi":"10.1007/s10911-022-09526-6","DOIUrl":"10.1007/s10911-022-09526-6","url":null,"abstract":"<p><p>The thirteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) Laboratories Annual Workshop took place on the 28-30 April 2022 in Weggis, Switzerland and focused on methods in mammary gland biology and breast cancer. Sixty scientists participated in the ENBDC annual workshop which had not been held in person since 2019 due to the global COVID-19 pandemic. Topics spanned the mammary gland biology field, ranging from lactation biology and embryonic development, single cell sequencing of the human breast, and stunning cutting-edge imaging of the mouse mammary gland and human breast as well as breast cancer research topics including invasive progression of the pre-invasive DCIS stage, metabolic determinants of endocrine therapy resistance, models for lobular breast cancer, and how mutational landscapes of normal breast during age and pregnancy determine cancer risk. The latest findings from participating researchers were presented through oral presentations and poster sessions and included plenty of unpublished work.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 3-4","pages":"233-239"},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10867312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01Epub Date: 2022-06-13DOI: 10.1007/s10911-022-09520-y
Eric P Souto, Lacey E Dobrolecki, Hugo Villanueva, Andrew G Sikora, Michael T Lewis
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
{"title":"In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts.","authors":"Eric P Souto, Lacey E Dobrolecki, Hugo Villanueva, Andrew G Sikora, Michael T Lewis","doi":"10.1007/s10911-022-09520-y","DOIUrl":"10.1007/s10911-022-09520-y","url":null,"abstract":"<p><p>Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for \"credentialing\" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 2","pages":"211-230"},"PeriodicalIF":3.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9548174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1007/s10911-022-09519-5
Yusaku Tsugami, Naoki Suzuki, T. Nii, N. Isobe
{"title":"Sodium Acetate and Sodium Butyrate Differentially Upregulate Antimicrobial Component Production in Mammary Glands of Lactating Goats","authors":"Yusaku Tsugami, Naoki Suzuki, T. Nii, N. Isobe","doi":"10.1007/s10911-022-09519-5","DOIUrl":"https://doi.org/10.1007/s10911-022-09519-5","url":null,"abstract":"","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 1","pages":"133 - 144"},"PeriodicalIF":2.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44050077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-17DOI: 10.1007/s10911-022-09518-6
Haruka Wakasa, Yusaku Tsugami, Taku Koyama, Liang Han, T. Nishimura, N. Isobe, Ken Kobayashi
{"title":"Adverse Effects of High Temperature On Mammary Alveolar Development In Vitro","authors":"Haruka Wakasa, Yusaku Tsugami, Taku Koyama, Liang Han, T. Nishimura, N. Isobe, Ken Kobayashi","doi":"10.1007/s10911-022-09518-6","DOIUrl":"https://doi.org/10.1007/s10911-022-09518-6","url":null,"abstract":"","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 1","pages":"155 - 170"},"PeriodicalIF":2.5,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43193401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer is one of the most common malignancies worldwide. Circular RNAs (CircRNAs) were revealed to be implicated in the development of breast cancer. In this research, we aimed to investigate the role and underlying mechanism of circ_0008500 in the development and radiosensitivity of breast cancer. Using real-time quantitative PCR (RT-qPCR) and western blot, we found that hsa_circ_0008500 (circ_0008500) and profilin 2 (PFN2) were increased, while microRNA-758-3p (miR-758-3p) was decreased in breast cancer tissues and cells. Cell viability, the number of colonies, proliferation and apoptosis were detected using CCK-8, colony formation, EdU assays and flow cytometry, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were devoted to test the interaction between miR-758-3p and circ_0008500 or PFN2. The results showed that circ_0008500 knockdown inhibited cell growth, and facilitated cell apoptosis and radiosensitivity in breast cancer cells in vitro. Moreover, circ_0008500 regulated PFN2 expression by sponging miR-758-3p. Functionally, circ_0008500 knockdown regulated cell behaviors and radiosensitivity by targeting miR-758-3p to downregulate PFN2 expression in vitro. Additionally, in vivo tumor formation assay and immunohistochemistry (IHC) assay demonstrated that circ_0008500 knockdown enhanced the radiosensitivity and repressed tumor growth in vivo. In conclusion, circ_0008500 inhibition promoted the radiosensitivity and restrained the development of breast cancer by downregulating PFN2 expression via targeting miR-758-3p.
{"title":"Circ_0008500 Knockdown Improves Radiosensitivity and Inhibits Tumorigenesis in Breast Cancer Through the miR-758-3p/PFN2 Axis.","authors":"Deyou Kong, Dongxing Shen, Zhikun Liu, Jun Zhang, Jian Zhang, Cuizhi Geng","doi":"10.1007/s10911-022-09514-w","DOIUrl":"10.1007/s10911-022-09514-w","url":null,"abstract":"<p><p>Breast cancer is one of the most common malignancies worldwide. Circular RNAs (CircRNAs) were revealed to be implicated in the development of breast cancer. In this research, we aimed to investigate the role and underlying mechanism of circ_0008500 in the development and radiosensitivity of breast cancer. Using real-time quantitative PCR (RT-qPCR) and western blot, we found that hsa_circ_0008500 (circ_0008500) and profilin 2 (PFN2) were increased, while microRNA-758-3p (miR-758-3p) was decreased in breast cancer tissues and cells. Cell viability, the number of colonies, proliferation and apoptosis were detected using CCK-8, colony formation, EdU assays and flow cytometry, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were devoted to test the interaction between miR-758-3p and circ_0008500 or PFN2. The results showed that circ_0008500 knockdown inhibited cell growth, and facilitated cell apoptosis and radiosensitivity in breast cancer cells in vitro. Moreover, circ_0008500 regulated PFN2 expression by sponging miR-758-3p. Functionally, circ_0008500 knockdown regulated cell behaviors and radiosensitivity by targeting miR-758-3p to downregulate PFN2 expression in vitro. Additionally, in vivo tumor formation assay and immunohistochemistry (IHC) assay demonstrated that circ_0008500 knockdown enhanced the radiosensitivity and repressed tumor growth in vivo. In conclusion, circ_0008500 inhibition promoted the radiosensitivity and restrained the development of breast cancer by downregulating PFN2 expression via targeting miR-758-3p.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 1","pages":"37-52"},"PeriodicalIF":2.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41359950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01Epub Date: 2022-02-09DOI: 10.1007/s10911-022-09512-y
Zach Carlson, Hannah Hafner, Noura El Habbal, Emma Harman, Stephanie Liu, Nathalie Botezatu, Masa Alharastani, Cecilia Rivet, Holly Reynolds, Nyahon Both, Haijing Sun, Dave Bridges, Brigid Gregg
Maternal health and diet can have important consequences for offspring nutrition and metabolic health. During lactation, signals are communicated from the mother to the infant through milk via macronutrients, hormones, and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring weaning. We found that lactational HFD increased maternal adipose tissue weight, mammary gland adipocyte size, and altered milk lipid composition causing a higher amount of omega-6 (n6) long chain fatty acids and lower omega-3 (n3). Offspring of HFD dams were heavier with more body fat during suckling. Metformin (Met) exposure decreased maternal blood glucose and several milk amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin than HFD, but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to rescue the offspring from the effects of a maternal HFD during lactation.
{"title":"Short Term Changes in Dietary Fat Content and Metformin Treatment During Lactation Impact Milk Composition and Mammary Gland Morphology.","authors":"Zach Carlson, Hannah Hafner, Noura El Habbal, Emma Harman, Stephanie Liu, Nathalie Botezatu, Masa Alharastani, Cecilia Rivet, Holly Reynolds, Nyahon Both, Haijing Sun, Dave Bridges, Brigid Gregg","doi":"10.1007/s10911-022-09512-y","DOIUrl":"10.1007/s10911-022-09512-y","url":null,"abstract":"<p><p>Maternal health and diet can have important consequences for offspring nutrition and metabolic health. During lactation, signals are communicated from the mother to the infant through milk via macronutrients, hormones, and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring weaning. We found that lactational HFD increased maternal adipose tissue weight, mammary gland adipocyte size, and altered milk lipid composition causing a higher amount of omega-6 (n6) long chain fatty acids and lower omega-3 (n3). Offspring of HFD dams were heavier with more body fat during suckling. Metformin (Met) exposure decreased maternal blood glucose and several milk amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin than HFD, but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to rescue the offspring from the effects of a maternal HFD during lactation.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 1","pages":"1-18"},"PeriodicalIF":2.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9383157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01Epub Date: 2022-04-22DOI: 10.1007/s10911-022-09516-8
Marit Valla, Elise Klæstad, Borgny Ytterhus, Anna M Bofin
CCND1 is located on 11q13. Increased CCND1 copy number (CN) in breast cancer (BC) is associated with high histopathological grade, high proliferation, and Luminal B subtype. In this study of CCND1 in primary BCs and corresponding axillary lymph node metastases (LNM),we examine associations between CCND1 CN in primary BCs and proliferation status, molecular subtype, and prognosis. Furthermore, we studied associations between CCND1 CN and CNs of FGFR1 and ZNF703, both of which are located on 8p12. Fluorescence in situ hybridization probes for CCND1 and chromosome 11 centromere were used on tissue microarrays comprising 526 BCs and 123 LNM. We assessed associations between CCND1 CN and tumour characteristics using Pearson's χ2 test, and estimated cumulative risks of death from BC and hazard ratios in analysis of prognosis. We found CCND1 CN ≥ 4 < 6 in 45 (8.6%) tumours, and ≥ 6 in 42 (8.0%). CCND1 CN (≥ 6) was seen in all molecular subtypes, most frequently in Luminal B (HER2-) (20/126; 16%). Increased CCND1 CN was associated with high histopathological grade, high Ki-67, and high mitotic count, but not prognosis. CCND1 CN ≥ 6 was accompanied by CN increase of FGFR1 in 6/40 cases (15.0%) and ZNF703 in 5/38 cases (13.2%). Three cases showed CN increase of all three genes. High CCND1 CN was most frequent in Luminal B (HER2-) tumours. Good correlation between CCND1 CNs in BCs and LNM was observed. Despite associations between high CCND1 CN and aggressive tumour characteristics, the prognostic impact of CCND1 CN remains unresolved.
{"title":"CCND1 Amplification in Breast Cancer -associations With Proliferation, Histopathological Grade, Molecular Subtype and Prognosis.","authors":"Marit Valla, Elise Klæstad, Borgny Ytterhus, Anna M Bofin","doi":"10.1007/s10911-022-09516-8","DOIUrl":"10.1007/s10911-022-09516-8","url":null,"abstract":"<p><p>CCND1 is located on 11q13. Increased CCND1 copy number (CN) in breast cancer (BC) is associated with high histopathological grade, high proliferation, and Luminal B subtype. In this study of CCND1 in primary BCs and corresponding axillary lymph node metastases (LNM),we examine associations between CCND1 CN in primary BCs and proliferation status, molecular subtype, and prognosis. Furthermore, we studied associations between CCND1 CN and CNs of FGFR1 and ZNF703, both of which are located on 8p12. Fluorescence in situ hybridization probes for CCND1 and chromosome 11 centromere were used on tissue microarrays comprising 526 BCs and 123 LNM. We assessed associations between CCND1 CN and tumour characteristics using Pearson's χ<sup>2</sup> test, and estimated cumulative risks of death from BC and hazard ratios in analysis of prognosis. We found CCND1 CN ≥ 4 < 6 in 45 (8.6%) tumours, and ≥ 6 in 42 (8.0%). CCND1 CN (≥ 6) was seen in all molecular subtypes, most frequently in Luminal B (HER2<sup>-</sup>) (20/126; 16%). Increased CCND1 CN was associated with high histopathological grade, high Ki-67, and high mitotic count, but not prognosis. CCND1 CN ≥ 6 was accompanied by CN increase of FGFR1 in 6/40 cases (15.0%) and ZNF703 in 5/38 cases (13.2%). Three cases showed CN increase of all three genes. High CCND1 CN was most frequent in Luminal B (HER2<sup>-</sup>) tumours. Good correlation between CCND1 CNs in BCs and LNM was observed. Despite associations between high CCND1 CN and aggressive tumour characteristics, the prognostic impact of CCND1 CN remains unresolved.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 1","pages":"67-77"},"PeriodicalIF":2.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46851350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}