Pub Date : 2021-09-01Epub Date: 2021-07-06DOI: 10.1007/s10911-021-09493-4
Adelina Plangger, Werner Haslik, Barbara Rath, Christoph Neumayer, Gerhard Hamilton
Lipofilling may constitute a technique to assist reconstruction of breasts following prophylactic mastectomy for patients with mutated BRCA1 or BRCA2 genes. However, to date it is not clear whether adipose-derived stromal cells (ADSCs) increase the risk of tumor initiation and progression in this situation. Therefore, the interactions of BRCA1 mutated breast cancer cell lines with normal ADSCs were investigated in the present study. Characteristics of MDA-MB-436 (BRCA1 c.5277 + 1G > A) and HCC1937 (BRCA1 p.Gln1756.Profs*74) were compared to MDA-MB-231 and T47D BRCA1/2 wild-type breast cancer cell lines. ADSCs were cultivated from lipoaspirates of a panel of BRCA1/2- wildtype patients. Interactions of conditioned medium (CM) of these cells with the breast cancer lines were studied using proliferation and migration assays as well as adipokine expression western blot arrays. CM of ADSCs exhibit a dose-dependent stimulation of the proliferation of the breast cancer cell lines. However, of the ADSC preparations tested, only 1 out of 18 samples showed a significant higher stimulation of BRCA1-mutated MDA-MB-436 versus wildtype MDA-MB-231 cells, and all CM revealed lower stimulatory activity for BRCA1-mutated HCC1937 versus wildtype T47D cells. Additionally, migration of breast cancer cells in response to CM of ADSCs proved to be equivalent or slower for BRCA1/2 mutated versus nonmutated cancer cells and, with exception of angiopoietin-like 2, induced expression of adipokines showed no major difference. Effects of media conditioned by normal ADSCs showed largely comparable effects on BRCA1-mutated and wildtype breast cancer cell lines thus advocating lipofilling, preferentially employing allogeneic non-mutated ADSCs.
{"title":"Interactions of BRCA1-mutated Breast Cancer Cell Lines with Adipose-derived Stromal Cells (ADSCs).","authors":"Adelina Plangger, Werner Haslik, Barbara Rath, Christoph Neumayer, Gerhard Hamilton","doi":"10.1007/s10911-021-09493-4","DOIUrl":"https://doi.org/10.1007/s10911-021-09493-4","url":null,"abstract":"<p><p>Lipofilling may constitute a technique to assist reconstruction of breasts following prophylactic mastectomy for patients with mutated BRCA1 or BRCA2 genes. However, to date it is not clear whether adipose-derived stromal cells (ADSCs) increase the risk of tumor initiation and progression in this situation. Therefore, the interactions of BRCA1 mutated breast cancer cell lines with normal ADSCs were investigated in the present study. Characteristics of MDA-MB-436 (BRCA1 c.5277 + 1G > A) and HCC1937 (BRCA1 p.Gln1756.Profs*74) were compared to MDA-MB-231 and T47D BRCA1/2 wild-type breast cancer cell lines. ADSCs were cultivated from lipoaspirates of a panel of BRCA1/2- wildtype patients. Interactions of conditioned medium (CM) of these cells with the breast cancer lines were studied using proliferation and migration assays as well as adipokine expression western blot arrays. CM of ADSCs exhibit a dose-dependent stimulation of the proliferation of the breast cancer cell lines. However, of the ADSC preparations tested, only 1 out of 18 samples showed a significant higher stimulation of BRCA1-mutated MDA-MB-436 versus wildtype MDA-MB-231 cells, and all CM revealed lower stimulatory activity for BRCA1-mutated HCC1937 versus wildtype T47D cells. Additionally, migration of breast cancer cells in response to CM of ADSCs proved to be equivalent or slower for BRCA1/2 mutated versus nonmutated cancer cells and, with exception of angiopoietin-like 2, induced expression of adipokines showed no major difference. Effects of media conditioned by normal ADSCs showed largely comparable effects on BRCA1-mutated and wildtype breast cancer cell lines thus advocating lipofilling, preferentially employing allogeneic non-mutated ADSCs.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 3","pages":"235-245"},"PeriodicalIF":2.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-021-09493-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39154930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-10-12DOI: 10.1007/s10911-021-09501-7
Edith Kordon, Claudia Lanari, Pablo Mando, Virginia Novaro, Mario Rossi, Marina Simian
The first Buenos Aires Breast Cancer Symposium (BA-BCS) was held in a virtual format, between the 17th and the 21st of May 2021. The main goal of the meeting was to facilitate the interaction among physicians and basic researchers from South America and with peers from the rest of the world. To embrace their different interests and concerns, the congress included not only talks on basic, translational and clinical research, but also round tables to discuss diagnostic methods, research financing and biobank management, as well as virtual poster sessions in which the youngest fellows presented their recent findings. This report provides a brief overview of the talks delivered during the meeting, which addressed a wide variety of vital issues for breast cancer research mostly focused on the accurate diagnosis, prevention and treatment of this illness. The presentations included a wide spectrum of themes including hormone receptors and the relevance of their mutations, immunotherapy, cancer stem cells, mouse models, environmental hazards, genetics and epigenetics, local and systemic therapies, liquid biopsies, the metastatic cascade, therapy resistance and dormancy, among others.
{"title":"The BA-BCS 2021: An Initial \"Trial\" for Integrating Basic Science and Medical Progress on Breast Cancer in a Latin-American Country.","authors":"Edith Kordon, Claudia Lanari, Pablo Mando, Virginia Novaro, Mario Rossi, Marina Simian","doi":"10.1007/s10911-021-09501-7","DOIUrl":"https://doi.org/10.1007/s10911-021-09501-7","url":null,"abstract":"<p><p>The first Buenos Aires Breast Cancer Symposium (BA-BCS) was held in a virtual format, between the 17<sup>th</sup> and the 21<sup>st</sup> of May 2021. The main goal of the meeting was to facilitate the interaction among physicians and basic researchers from South America and with peers from the rest of the world. To embrace their different interests and concerns, the congress included not only talks on basic, translational and clinical research, but also round tables to discuss diagnostic methods, research financing and biobank management, as well as virtual poster sessions in which the youngest fellows presented their recent findings. This report provides a brief overview of the talks delivered during the meeting, which addressed a wide variety of vital issues for breast cancer research mostly focused on the accurate diagnosis, prevention and treatment of this illness. The presentations included a wide spectrum of themes including hormone receptors and the relevance of their mutations, immunotherapy, cancer stem cells, mouse models, environmental hazards, genetics and epigenetics, local and systemic therapies, liquid biopsies, the metastatic cascade, therapy resistance and dormancy, among others.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 3","pages":"227-234"},"PeriodicalIF":2.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39515580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-10-14DOI: 10.1007/s10911-021-09500-8
Russell C Hovey, Zuzana Koledova
{"title":"Evolution and Self-renewal of the Journal of Mammary Gland Biology and Neoplasia.","authors":"Russell C Hovey, Zuzana Koledova","doi":"10.1007/s10911-021-09500-8","DOIUrl":"10.1007/s10911-021-09500-8","url":null,"abstract":"","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 3","pages":"217-220"},"PeriodicalIF":3.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39517013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-08-26DOI: 10.1007/s10911-021-09498-z
Elsa Charifou, Gunnhildur Asta Traustadottir, Mohamed Bentires-Alj, Beatrice Howard, Alexandra Van Keymeulen
The twelfth annual workshop of the European Network for Breast Development and Cancer focused on methods in mammary gland biology and breast cancer, was scheduled to take place on March 26-28, 2020, in Weggis, Switzerland. Due to the COVID-19 pandemic, the meeting was rescheduled twice and eventually happened as a virtual meeting on April 22 and 23, 2021. The main topics of the meeting were branching and development of the mammary gland, tumor microenvironment, circulating tumor cells, tumor dormancy and breast cancer metastasis. Novel and unpublished findings related to these topics were presented, with a particular focus on the methods used to obtain them. Virtual poster sessions were a success, with many constructive and fruitful interactions between researchers and covered many areas of mammary gland biology and breast cancer.
{"title":"Twelfth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer.","authors":"Elsa Charifou, Gunnhildur Asta Traustadottir, Mohamed Bentires-Alj, Beatrice Howard, Alexandra Van Keymeulen","doi":"10.1007/s10911-021-09498-z","DOIUrl":"10.1007/s10911-021-09498-z","url":null,"abstract":"<p><p>The twelfth annual workshop of the European Network for Breast Development and Cancer focused on methods in mammary gland biology and breast cancer, was scheduled to take place on March 26-28, 2020, in Weggis, Switzerland. Due to the COVID-19 pandemic, the meeting was rescheduled twice and eventually happened as a virtual meeting on April 22 and 23, 2021. The main topics of the meeting were branching and development of the mammary gland, tumor microenvironment, circulating tumor cells, tumor dormancy and breast cancer metastasis. Novel and unpublished findings related to these topics were presented, with a particular focus on the methods used to obtain them. Virtual poster sessions were a success, with many constructive and fruitful interactions between researchers and covered many areas of mammary gland biology and breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 3","pages":"221-226"},"PeriodicalIF":2.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39357376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-08-31DOI: 10.1007/s10911-021-09497-0
Anne Gallez, Isabelle Dias Da Silva, Vincent Wuidar, Jean-Michel Foidart, Christel Péqueux
Estrogens have pleiotropic effects on many reproductive and non-reproductive tissues and organs including the mammary gland, uterus, ovaries, vagina, and endothelium. Estrogen receptor α functions as the principal mediator of estrogenic action in most of these tissues. Estetrol (E4) is a native fetal estrogen with selective tissue actions that is currently approved for use as the estrogen component in a combined oral contraceptive and is being developed as a menopause hormone therapy (MHT, also known as hormone replacement therapy). However, exogenous hormonal treatments, in particular MHTs, have been shown to promote the growth of preexisting breast cancers and are associated with a variable risk of breast cancer depending on the treatment modality. Therefore, evaluating the safety of E4-based formulations on the breast forms a crucial part of the clinical development process. This review highlights preclinical and clinical studies that have assessed the effects of E4 and E4-progestogen combinations on the mammary gland and breast cancer, focusing in particular on the estrogenic and anti-estrogenic properties of E4. We discuss the potential advantages of E4 over current available estrogen-formulations as a contraceptive and for the treatment of symptoms due to menopause. We also consider the potential of E4 for the treatment of endocrine-resistant breast cancer.
{"title":"Estetrol and Mammary Gland: Friends or Foes?","authors":"Anne Gallez, Isabelle Dias Da Silva, Vincent Wuidar, Jean-Michel Foidart, Christel Péqueux","doi":"10.1007/s10911-021-09497-0","DOIUrl":"https://doi.org/10.1007/s10911-021-09497-0","url":null,"abstract":"<p><p>Estrogens have pleiotropic effects on many reproductive and non-reproductive tissues and organs including the mammary gland, uterus, ovaries, vagina, and endothelium. Estrogen receptor α functions as the principal mediator of estrogenic action in most of these tissues. Estetrol (E4) is a native fetal estrogen with selective tissue actions that is currently approved for use as the estrogen component in a combined oral contraceptive and is being developed as a menopause hormone therapy (MHT, also known as hormone replacement therapy). However, exogenous hormonal treatments, in particular MHTs, have been shown to promote the growth of preexisting breast cancers and are associated with a variable risk of breast cancer depending on the treatment modality. Therefore, evaluating the safety of E4-based formulations on the breast forms a crucial part of the clinical development process. This review highlights preclinical and clinical studies that have assessed the effects of E4 and E4-progestogen combinations on the mammary gland and breast cancer, focusing in particular on the estrogenic and anti-estrogenic properties of E4. We discuss the potential advantages of E4 over current available estrogen-formulations as a contraceptive and for the treatment of symptoms due to menopause. We also consider the potential of E4 for the treatment of endocrine-resistant breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 3","pages":"297-308"},"PeriodicalIF":2.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39369690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-01-13DOI: 10.1007/s10911-020-09477-w
Ashley M Fuller, Lin Yang, Alina M Hamilton, Jason R Pirone, Amy L Oldenburg, Melissa A Troester
Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype.
{"title":"Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis.","authors":"Ashley M Fuller, Lin Yang, Alina M Hamilton, Jason R Pirone, Amy L Oldenburg, Melissa A Troester","doi":"10.1007/s10911-020-09477-w","DOIUrl":"https://doi.org/10.1007/s10911-020-09477-w","url":null,"abstract":"<p><p>Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 2","pages":"89-99"},"PeriodicalIF":2.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-020-09477-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38814464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-06-14DOI: 10.1007/s10911-021-09490-7
Anna Sadovnikova, Sergio C Garcia, Russell C Hovey
Lactose is the primary carbohydrate in the milk of most mammals and is unique in that it is only synthesized by epithelial cells in the mammary glands. Lactose is also essential for the development and nutrition of infants. Across species, the concentration of lactose in milk holds a strong positive correlation with overall milk volume. Additionally, there is a range of examples where the onset of lactose synthesis as well as the content of lactose in milk varies between species and throughout a lactation. Despite this diversity, the precursors, genes, proteins and ions that regulate lactose synthesis have not received the depth of study they likely deserve relative to the significance of this simple and abundant molecule. Through this review, our objective is to highlight the requirements for lactose synthesis at the biochemical, cellular and temporal levels through a comparative approach. This overview also serves as the prelude to a companion review describing the dietary, hormonal, molecular, and genetic factors that regulate lactose synthesis.
{"title":"A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis.","authors":"Anna Sadovnikova, Sergio C Garcia, Russell C Hovey","doi":"10.1007/s10911-021-09490-7","DOIUrl":"https://doi.org/10.1007/s10911-021-09490-7","url":null,"abstract":"<p><p>Lactose is the primary carbohydrate in the milk of most mammals and is unique in that it is only synthesized by epithelial cells in the mammary glands. Lactose is also essential for the development and nutrition of infants. Across species, the concentration of lactose in milk holds a strong positive correlation with overall milk volume. Additionally, there is a range of examples where the onset of lactose synthesis as well as the content of lactose in milk varies between species and throughout a lactation. Despite this diversity, the precursors, genes, proteins and ions that regulate lactose synthesis have not received the depth of study they likely deserve relative to the significance of this simple and abundant molecule. Through this review, our objective is to highlight the requirements for lactose synthesis at the biochemical, cellular and temporal levels through a comparative approach. This overview also serves as the prelude to a companion review describing the dietary, hormonal, molecular, and genetic factors that regulate lactose synthesis.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 2","pages":"181-196"},"PeriodicalIF":2.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-021-09490-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39024558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Breast Cancer Response to Therapy: Can microRNAs Lead the Way?","authors":"Nina Petrović, Irina Nakashidze, Milica Nedeljković","doi":"10.1007/s10911-021-09480-9","DOIUrl":"https://doi.org/10.1007/s10911-021-09480-9","url":null,"abstract":"","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 2","pages":"179"},"PeriodicalIF":2.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-021-09480-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25372055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-04-17DOI: 10.1007/s10911-021-09484-5
Emily L Duderstadt, Mary Ann Sanders, David J Samuelson
RNAscope is a quantitative in situ gene expression measurement technique that preserves the spatial aspect of intact tissue; thus, allowing for comparison of specific cell populations and morphologies. Reliable and accurate measurement of gene expression in tissue is dependent on preserving RNA integrity and the quantitative nature of RNAscope. The purpose of this study was to determine if the quantitative nature of RNAscope was retained following processing and carmine staining of mammary gland whole-mounts, which are commonly used to identify lesions, such as hyperplasia and ductal carcinoma in situ (DCIS). We were concerned that handling and procedures required to visualize microscopic disease lesions might compromise RNA integrity and the robustness of RNAscope. No effect on the quantitative abilities of RNAscope was detected when mammary gland whole-mounts were pre-screened for lesions of interest prior to RNAscope. This was determined in comparison to tissue that had been formalin-fixed and paraffin embedded (FFPE) immediately after collection. The ability to pre-screen whole-mounts allowed unpalpable diseased lesions to be identified without labor-intensive serial sectioning of tissue samples to find diseased tissue. This method is applicable to evaluate mammary gland whole-mounts during normal mammary gland development, function, and disease progression.
{"title":"A Method to Pre-Screen Rat Mammary Gland Whole-Mounts Prior To RNAscope.","authors":"Emily L Duderstadt, Mary Ann Sanders, David J Samuelson","doi":"10.1007/s10911-021-09484-5","DOIUrl":"https://doi.org/10.1007/s10911-021-09484-5","url":null,"abstract":"<p><p>RNAscope is a quantitative in situ gene expression measurement technique that preserves the spatial aspect of intact tissue; thus, allowing for comparison of specific cell populations and morphologies. Reliable and accurate measurement of gene expression in tissue is dependent on preserving RNA integrity and the quantitative nature of RNAscope. The purpose of this study was to determine if the quantitative nature of RNAscope was retained following processing and carmine staining of mammary gland whole-mounts, which are commonly used to identify lesions, such as hyperplasia and ductal carcinoma in situ (DCIS). We were concerned that handling and procedures required to visualize microscopic disease lesions might compromise RNA integrity and the robustness of RNAscope. No effect on the quantitative abilities of RNAscope was detected when mammary gland whole-mounts were pre-screened for lesions of interest prior to RNAscope. This was determined in comparison to tissue that had been formalin-fixed and paraffin embedded (FFPE) immediately after collection. The ability to pre-screen whole-mounts allowed unpalpable diseased lesions to be identified without labor-intensive serial sectioning of tissue samples to find diseased tissue. This method is applicable to evaluate mammary gland whole-mounts during normal mammary gland development, function, and disease progression.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 2","pages":"113-120"},"PeriodicalIF":2.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-021-09484-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38889058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2020-12-05DOI: 10.1007/s10911-020-09471-2
Katherine Hughes
An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.
{"title":"Development and Pathology of the Equine Mammary Gland.","authors":"Katherine Hughes","doi":"10.1007/s10911-020-09471-2","DOIUrl":"10.1007/s10911-020-09471-2","url":null,"abstract":"<p><p>An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"26 2","pages":"121-134"},"PeriodicalIF":2.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38338934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}