Pub Date : 2024-10-01Epub Date: 2024-07-03DOI: 10.1089/jmf.2024.0012
Maria Diana Hartnick, Jeanine L Marnewick, Penelope Engel-Hills, Merlisa Kemp, Kobus Pretorius, Stanley Lekata, Corrie Uys
The prevalence of cardiovascular disease (CVD) has increased in South Africa, emphasizing the importance of prevention strategies. This study used echocardiography to investigate the impact of Rooibos on cardiovascular function in those at risk of CVD. This research aims to contribute to understanding its effects on reducing cardiovascular risk factors. The study design involved a 12-week randomized, parallel, double-blinded, placebo-controlled dietary intervention trial using capsules containing standardized water-soluble extracts of green and traditional fermented Rooibos alongside a placebo control. Echocardiography was incorporated as a diagnostic imaging tool to assess cardiac function in the participant cohort. Aorta (AO) dimensions showed no significant change in any intervention group. Left atrium (LA) reduced in size from 3.832 ± 0.071 cm to 3.675 ± 0.067 cm (P = 0.01). There was no significant change in LA/AO ratio in any intervention group. Interventricular septum diameter in the placebo group decreased from 1.334 ± 0.030 cm to 1.250 ± 0.025 cm (P = 0.002), with no significance in fermented Rooibos, while green Rooibos resulted in a decrease from 1.282 ± 0.036 cm to 1.186 ± 0.029 cm (P = 0.002). Left ventricle posterior wall (LVPW) showed no significant changes in any of the intervention group. The left ventricle mass in the placebo and green Rooibos groups demonstrated no significance changes, while fermented Rooibos caused a decrease from 204.102 ± 7.102 g to 191.394 ± 6.707 g (P = 0.015). The phytochemical bioactive components, such as the polyphenolic antioxidants present in green and fermented Rooibos, improved cardiovascular function. This study confirms the effectiveness of echocardiography as imaging tool for assessing cardiac function in this particular population. Regular Rooibos consumption may offer promising therapeutic benefits for preventing and managing CVD risk.
{"title":"Impact of Chronic Consumption of Herbal Rooibos on Cardiovascular Function in Adults with Cardiovascular Risk.","authors":"Maria Diana Hartnick, Jeanine L Marnewick, Penelope Engel-Hills, Merlisa Kemp, Kobus Pretorius, Stanley Lekata, Corrie Uys","doi":"10.1089/jmf.2024.0012","DOIUrl":"10.1089/jmf.2024.0012","url":null,"abstract":"<p><p>The prevalence of cardiovascular disease (CVD) has increased in South Africa, emphasizing the importance of prevention strategies. This study used echocardiography to investigate the impact of Rooibos on cardiovascular function in those at risk of CVD. This research aims to contribute to understanding its effects on reducing cardiovascular risk factors. The study design involved a 12-week randomized, parallel, double-blinded, placebo-controlled dietary intervention trial using capsules containing standardized water-soluble extracts of green and traditional fermented Rooibos alongside a placebo control. Echocardiography was incorporated as a diagnostic imaging tool to assess cardiac function in the participant cohort. Aorta (AO) dimensions showed no significant change in any intervention group. Left atrium (LA) reduced in size from 3.832 ± 0.071 cm to 3.675 ± 0.067 cm (<i>P = 0.01</i>). There was no significant change in LA/AO ratio in any intervention group. Interventricular septum diameter in the placebo group decreased from 1.334 ± 0.030 cm to 1.250 ± 0.025 cm (<i>P = 0.002</i>), with no significance in fermented Rooibos, while green Rooibos resulted in a decrease from 1.282 ± 0.036 cm to 1.186 ± 0.029 cm (<i>P = 0.002</i>). Left ventricle posterior wall (LVPW) showed no significant changes in any of the intervention group. The left ventricle mass in the placebo and green Rooibos groups demonstrated no significance changes, while fermented Rooibos caused a decrease from 204.102 ± 7.102 g to 191.394 ± 6.707 g (<i>P = 0.015</i>). The phytochemical bioactive components, such as the polyphenolic antioxidants present in green and fermented Rooibos, improved cardiovascular function. This study confirms the effectiveness of echocardiography as imaging tool for assessing cardiac function in this particular population. Regular Rooibos consumption may offer promising therapeutic benefits for preventing and managing CVD risk.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"905-911"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-09DOI: 10.1089/jmf.2024.0021
Alya Mashaal, Heba Y El-Yamany, Hend Abd El-Halim Mansour
Maternal glucose is the principal macronutrient that sustains fetal growth. Prolonged exposure of the fetus to hyperglycemia from the early stages of pregnancy accelerates the maturation of the stimulus-secretion coupling mechanism in β cell autoimmunity, which leads to early hyperinsulinemia in type 1 diabetes mellitus (T1DM). Nowadays, diabetes mellitus (DM) is the most common medical complication of pregnancy, and among young women, the prevalence of overt diabetes and undiagnosed hyperglycemia is rising. Even though conventional medication is effective in treating DM, it is expensive and has harmful side effects. Herbal medicine will thus incorporate alternative therapy and be more effective and less toxic. Due to their bioactive components, olive leaves (Olea europaea) are frequently used medicinally; however, little is known about how this plant affects the immune system when it comes to diabetes. The current study used a pregnant mother rat model of alloxan-induced T1DM to examine the antidiabetic properties and embryonic safety of olive leaves. Forty adult female Sprague Dawley rats were split up into four groups as follows: nondiabetic, diabetic, olive, and diabetic-olive groups. All the mother rats were sacrificed on the 20th day of pregnancy, and fetuses were collected for further investigations. In diabetic pregnant mothers, fetuses had systemic modulation-negative effects. These effects were significantly reversed when the diabetic groups were supplemented with extracts from olive leaves. The findings showed that the olive leaf extract inhibits the diabetogenic effect mediated by alloxan with effective and protective systemic immunomodulation during embryonic development.
{"title":"Systemic/Immune-Modulation of <i>Olea europaea</i> Leaf Extract in Fetuses of Alloxan-Induced T1 Diabetic Rats.","authors":"Alya Mashaal, Heba Y El-Yamany, Hend Abd El-Halim Mansour","doi":"10.1089/jmf.2024.0021","DOIUrl":"10.1089/jmf.2024.0021","url":null,"abstract":"<p><p>Maternal glucose is the principal macronutrient that sustains fetal growth. Prolonged exposure of the fetus to hyperglycemia from the early stages of pregnancy accelerates the maturation of the stimulus-secretion coupling mechanism in β cell autoimmunity, which leads to early hyperinsulinemia in type 1 diabetes mellitus (T1DM). Nowadays, diabetes mellitus (DM) is the most common medical complication of pregnancy, and among young women, the prevalence of overt diabetes and undiagnosed hyperglycemia is rising. Even though conventional medication is effective in treating DM, it is expensive and has harmful side effects. Herbal medicine will thus incorporate alternative therapy and be more effective and less toxic. Due to their bioactive components, olive leaves (<i>Olea europaea</i>) are frequently used medicinally; however, little is known about how this plant affects the immune system when it comes to diabetes. The current study used a pregnant mother rat model of alloxan-induced T1DM to examine the antidiabetic properties and embryonic safety of olive leaves. Forty adult female Sprague Dawley rats were split up into four groups as follows: nondiabetic, diabetic, olive, and diabetic-olive groups. All the mother rats were sacrificed on the 20<sup>th</sup> day of pregnancy, and fetuses were collected for further investigations. In diabetic pregnant mothers, fetuses had systemic modulation-negative effects. These effects were significantly reversed when the diabetic groups were supplemented with extracts from olive leaves. The findings showed that the olive leaf extract inhibits the diabetogenic effect mediated by alloxan with effective and protective systemic immunomodulation during embryonic development.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"981-992"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-18DOI: 10.1089/jmf.2024.k.0043
Sun Pyo Kim, Inae Jeong, Namgil Kang, Minkyung Kim, Ok-Kyung Kim
This study investigated the antiobesity effects of black ginger extract (BGE) in high-fat diet (HFD)-induced obese mice. Mice were divided into six groups: normal diet control (NC, AIN-93G normal diet), 60% HFD control (HFD), HFD containing metformin at 250 mg/kg b.w. (Met, positive control), and HFD containing BGE at 5, 10, or 20 mg/kg b.w. for 15 weeks. BGE administration significantly prevented HFD-induced increases in weight gain, organ weight, and adipose tissue mass. Furthermore, it resulted in decreased adipogenesis and lipogenesis-related factors, including phosphorylated mitogen-activated protein kinase, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding proteins, sterol regulatory element-binding protein 1, phosphorylated cAMP response element-binding protein, glucose-6-phosphate dehydrogenase, fatty acid synthase, dephosphorylated ATP-citrate lyase, dephosphorylated acetyl-CoA carboxylase, and lipoprotein lipase, in white adipose tissues. Moreover, BGE administration enhanced lipolysis in white adipose tissue, as evidenced by elevated levels of adipose triglyceride lipase, phosphorylated hormone-sensitive lipase, and protein kinase A, along with reduced levels of perilipin and phosphodiesterase 3B. BGE induced thermogenesis in brown adipose tissues, as reflected by the increased expression of AMP-activated protein kinase, uncoupling protein 1, and carnitine palmitoyltransferase 1 and decreased levels of fatty acid-binding protein 4. In conclusion, this study provides comprehensive evidence supporting the antiobesity effects of BGE, elucidating the underlying molecular mechanisms involved in preventing weight gain, suppressing adipogenesis, promoting lipolysis, and stimulating thermogenesis. These findings suggest the potential therapeutic utility of BGE in combating obesity and associated metabolic disorders (KHGASP-2023-034).
{"title":"Black Ginger Extract Suppresses Fat Accumulation by Regulating Lipid Metabolism in High-Fat Diet-Fed Mice.","authors":"Sun Pyo Kim, Inae Jeong, Namgil Kang, Minkyung Kim, Ok-Kyung Kim","doi":"10.1089/jmf.2024.k.0043","DOIUrl":"10.1089/jmf.2024.k.0043","url":null,"abstract":"<p><p>This study investigated the antiobesity effects of black ginger extract (BGE) in high-fat diet (HFD)-induced obese mice. Mice were divided into six groups: normal diet control (NC, AIN-93G normal diet), 60% HFD control (HFD), HFD containing metformin at 250 mg/kg b.w. (Met, positive control), and HFD containing BGE at 5, 10, or 20 mg/kg b.w. for 15 weeks. BGE administration significantly prevented HFD-induced increases in weight gain, organ weight, and adipose tissue mass. Furthermore, it resulted in decreased adipogenesis and lipogenesis-related factors, including phosphorylated mitogen-activated protein kinase, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding proteins, sterol regulatory element-binding protein 1, phosphorylated cAMP response element-binding protein, glucose-6-phosphate dehydrogenase, fatty acid synthase, dephosphorylated ATP-citrate lyase, dephosphorylated acetyl-CoA carboxylase, and lipoprotein lipase, in white adipose tissues. Moreover, BGE administration enhanced lipolysis in white adipose tissue, as evidenced by elevated levels of adipose triglyceride lipase, phosphorylated hormone-sensitive lipase, and protein kinase A, along with reduced levels of perilipin and phosphodiesterase 3B. BGE induced thermogenesis in brown adipose tissues, as reflected by the increased expression of AMP-activated protein kinase, uncoupling protein 1, and carnitine palmitoyltransferase 1 and decreased levels of fatty acid-binding protein 4. In conclusion, this study provides comprehensive evidence supporting the antiobesity effects of BGE, elucidating the underlying molecular mechanisms involved in preventing weight gain, suppressing adipogenesis, promoting lipolysis, and stimulating thermogenesis. These findings suggest the potential therapeutic utility of BGE in combating obesity and associated metabolic disorders (KHGASP-2023-034).</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"922-930"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-12DOI: 10.1089/jmf.2024.k.0016
Fanli Bu, Man Zheng, Na Li, Xiafeng Yan, Hongwei Xin, Yeting Li, Fenglei Zhang
Twelve polyphenol derivatives were obtained in a protective activity-guided isolation from the Portulaca oleracea L. extract on a cell model of human umbilical vein endothelial cells (HUVECs) under diethylhexyl phthalate (DEHP) exposure. Among them, methyl (3,4,5-trimethoxybenzoyl) valylprolinate (PP-10) performed the most protective activity and inhibited DEHP exposure-induced HUVECs' apoptosis. PP-10 also inhibited the DEHP-induced inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-8) and adhesion molecule (ICAM-1 andVCAM-1) overexpression. Furthermore, DEHP-induced NLRP3 inflammasomes' and NF-κB signaling pathway activation was significantly inhibited after the PP-10 treatments. Of note, the current results suggest the potential application of Portulaca oleracea L. and PP-10 in the prevention of DEHP-induced inflammatory damages in HUVECs.
{"title":"Portulaca Oleracea L. Phenolic Amide Methyl (3,4,5-Trimethoxybenzoyl) Valylprolinate Attenuates Diethylhexyl Phthalate-Induced Human Umbilical Vein Endothelial Cells' Inflammation Through NLRP3 and NF-κB Pathways.","authors":"Fanli Bu, Man Zheng, Na Li, Xiafeng Yan, Hongwei Xin, Yeting Li, Fenglei Zhang","doi":"10.1089/jmf.2024.k.0016","DOIUrl":"10.1089/jmf.2024.k.0016","url":null,"abstract":"<p><p>Twelve polyphenol derivatives were obtained in a protective activity-guided isolation from the <i>Portulaca oleracea</i> L. extract on a cell model of human umbilical vein endothelial cells (HUVECs) under diethylhexyl phthalate (DEHP) exposure. Among them, methyl (3,4,5-trimethoxybenzoyl) valylprolinate (PP-10) performed the most protective activity and inhibited DEHP exposure-induced HUVECs' apoptosis. PP-10 also inhibited the DEHP-induced inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-8) and adhesion molecule (ICAM-1 andVCAM-1) overexpression. Furthermore, DEHP-induced NLRP3 inflammasomes' and NF-κB signaling pathway activation was significantly inhibited after the PP-10 treatments. Of note, the current results suggest the potential application of <i>Portulaca oleracea</i> L. and PP-10 in the prevention of DEHP-induced inflammatory damages in HUVECs.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"971-980"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-16DOI: 10.1089/jmf.2023.k.0322
Shengnan Liu, Heyu Wang, Shiwei Liu, Pei Yin, Shixin Song, Boyu Xiong, Lina Wang, Yunfeng Bi, Lei Yu
This study investigated the alleviating effect of fermented ginsenosides obtained through yeast strain fermentation transformation on acute liver injury (ALI) induced by CCl4. Strains were screened for their ability to produce β-glucosidase, the transformation ability of the strain was verified by high-performance liquid chromatography, and the Saccharomyces cerevisiae strain F6 was obtained by 26S rRNA sequencing. After fermentation by F6 strain, it was found that the content of ginsenosides Re, Rb1, and Rb2 was significantly decreased (P < 0.05), and rare ginsenosides were detected, with the content of Rh4 and Rg5 reaching 2.65 mg·g-1 and 2.56 mg·g-1. We also explored the preventive effect of fermented ginsenoside extract (FGE) on ALI. Mice were evenly divided into 9 groups as follows: control group, ALI model group, positive drug bifendate group, and treatment group, which included 3 ginsenoside extract (GE) groups and 3 FGE groups (dosage of 150, 300, and 450 mg·kg-1 b.w.). The results showed that compared with the ALI model group, FGE significantly increased the levels of glutathione peroxidase, hydroperoxidase, and superoxide dismutase and also decreased the malondialdehyde level. The levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin markers were significantly reduced, and the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly decreased. Bioinformatics analysis combined with Western blot validation explored the molecular mechanism of the effect of FGE. It was found that FGE could downregulate the expression of the p-AKT/AKT and the p-mTOR/mTOR ratios. These results suggested that FGE played an alleviative role in ALI by promoting autophagy to inhibit the AKT/mTOR signaling pathway.
{"title":"Fermented Ginsenosides Alleviate Acute Liver Injury Induced by CCl<sub>4</sub> in Mice by Regulating the AKT/mTOR Signaling Pathway.","authors":"Shengnan Liu, Heyu Wang, Shiwei Liu, Pei Yin, Shixin Song, Boyu Xiong, Lina Wang, Yunfeng Bi, Lei Yu","doi":"10.1089/jmf.2023.k.0322","DOIUrl":"10.1089/jmf.2023.k.0322","url":null,"abstract":"<p><p>This study investigated the alleviating effect of fermented ginsenosides obtained through yeast strain fermentation transformation on acute liver injury (ALI) induced by CCl<sub>4</sub>. Strains were screened for their ability to produce β-glucosidase, the transformation ability of the strain was verified by high-performance liquid chromatography, and the <i>Saccharomyces cerevisiae</i> strain F6 was obtained by 26S rRNA sequencing. After fermentation by F6 strain, it was found that the content of ginsenosides Re, Rb<sub>1</sub>, and Rb<sub>2</sub> was significantly decreased (<i>P</i> < 0.05), and rare ginsenosides were detected, with the content of Rh<sub>4</sub> and Rg<sub>5</sub> reaching 2.65 mg·g<sup>-1</sup> and 2.56 mg·g<sup>-1</sup>. We also explored the preventive effect of fermented ginsenoside extract (FGE) on ALI. Mice were evenly divided into 9 groups as follows: control group, ALI model group, positive drug bifendate group, and treatment group, which included 3 ginsenoside extract (GE) groups and 3 FGE groups (dosage of 150, 300, and 450 mg·kg<sup>-1</sup> b.w.). The results showed that compared with the ALI model group, FGE significantly increased the levels of glutathione peroxidase, hydroperoxidase, and superoxide dismutase and also decreased the malondialdehyde level. The levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin markers were significantly reduced, and the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly decreased. Bioinformatics analysis combined with Western blot validation explored the molecular mechanism of the effect of FGE. It was found that FGE could downregulate the expression of the p-AKT/AKT and the p-mTOR/mTOR ratios. These results suggested that FGE played an alleviative role in ALI by promoting autophagy to inhibit the AKT/mTOR signaling pathway.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"961-970"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-26DOI: 10.1089/jmf.2024.k.0021
Shiho Kasai, Anishma Karmacharya, Shin Sato
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease affecting the colon with idiopathic origin. Melinjo endosperm extract (MeE) contains polyphenolic compounds that have antioxidative and anticancer properties. We examined the effect of MeE on inflammation and mucin expression in the colons of UC of mice treated with dextran sulfate sodium (DSS). C57BL/6J male mice were assigned into four categories: control, DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE. The control group was provided distilled water and a standard chow diet for 4 weeks. In DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE groups, the mice were treated with MeE for 3 weeks followed by MeE diets and drinking water containing 3% DSS for a week. Macrophage count, the mucus area stained by Alcian blue (AB), the levels of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor-κB (NFκB) p65, and silent information regulator (Sirt) 1 protein expression, as well as proinflammatory mediators and Mucin 2 mRNA expression were assessed. In the DSS + 0% MeE group, the AB-stained areas and Mucin 2 mRNA expression levels were observed to be lower than those of controls. However, the levels in the +0.5% MeE group were significantly increased. Compared with the control group, the macrophage number, the expression of IL-1β mRNA, and NFκB p65 protein in the DSS + 0% MeE group showed a significant increase. Conversely, these levels were significantly decreased in the +0.5% MeE group. The phosphorylated AMPK and Sirt1 protein levels were upregulated in the +0.5% MeE group. In conclusion, MeE may alleviate UC injury by reducing macrophage infiltration and regulating the AMPK/NFκB/Sirt1 pathway.
溃疡性结肠炎(UC)是一种影响结肠的亚型炎症性肠病,具有特发性。美林茹胚乳提取物(MeE)含有多酚化合物,具有抗氧化和抗癌特性。我们研究了MeE对使用葡聚糖硫酸钠(DSS)治疗的UC小鼠结肠中炎症和粘蛋白表达的影响。我们将 C57BL/6J 雄性小鼠分为四组:对照组、DSS + 0% MeE 组、DSS + 0.1% MeE 组和 DSS + 0.5% MeE 组。对照组提供蒸馏水和标准饲料,为期 4 周。在 DSS + 0% MeE、DSS + 0.1% MeE 和 DSS + 0.5% MeE 组中,小鼠先用 MeE 治疗 3 周,然后再用 MeE 食物和含有 3% DSS 的饮用水治疗一周。评估了巨噬细胞数量、用阿尔西安蓝(AB)染色的粘液面积、单磷酸腺苷激活蛋白激酶(AMPK)、核因子-κB(NFκB)p65 和沉默信息调节因子(Sirt)1 蛋白表达水平,以及促炎介质和粘蛋白 2 mRNA 表达水平。在 DSS + 0% MeE 组,观察到 AB 染色区域和 Mucin 2 mRNA 表达水平低于对照组。然而,+0.5% MeE 组的表达水平明显升高。与对照组相比,DSS + 0% MeE 组的巨噬细胞数量、IL-1β mRNA 表达量和 NFκB p65 蛋白均有显著增加。相反,这些水平在 +0.5% MeE 组明显下降。磷酸化 AMPK 和 Sirt1 蛋白水平在 +0.5% MeE 组中上调。总之,MeE 可通过减少巨噬细胞浸润和调节 AMPK/NFκB/Sirt1 通路来减轻 UC 损伤。
{"title":"Melinjo (<i>Gnetum gnemon</i> L) Extract Attenuates Colonic Inflammation in a Mouse Colitis Model by Regulating the AMPK/NFκB/Sirt1 Pathway.","authors":"Shiho Kasai, Anishma Karmacharya, Shin Sato","doi":"10.1089/jmf.2024.k.0021","DOIUrl":"10.1089/jmf.2024.k.0021","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a subtype of inflammatory bowel disease affecting the colon with idiopathic origin. Melinjo endosperm extract (MeE) contains polyphenolic compounds that have antioxidative and anticancer properties. We examined the effect of MeE on inflammation and mucin expression in the colons of UC of mice treated with dextran sulfate sodium (DSS). C57BL/6J male mice were assigned into four categories: control, DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE. The control group was provided distilled water and a standard chow diet for 4 weeks. In DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE groups, the mice were treated with MeE for 3 weeks followed by MeE diets and drinking water containing 3% DSS for a week. Macrophage count, the mucus area stained by Alcian blue (AB), the levels of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor-κB (NFκB) p65, and silent information regulator (Sirt) 1 protein expression, as well as proinflammatory mediators and Mucin 2 mRNA expression were assessed. In the DSS + 0% MeE group, the AB-stained areas and Mucin 2 mRNA expression levels were observed to be lower than those of controls. However, the levels in the +0.5% MeE group were significantly increased. Compared with the control group, the macrophage number, the expression of IL-1β mRNA, and NFκB p65 protein in the DSS + 0% MeE group showed a significant increase. Conversely, these levels were significantly decreased in the +0.5% MeE group. The phosphorylated AMPK and Sirt1 protein levels were upregulated in the +0.5% MeE group. In conclusion, MeE may alleviate UC injury by reducing macrophage infiltration and regulating the AMPK/NFκB/Sirt1 pathway.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"931-939"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex and multifactorial disease. Dark tea exhibits great potential for various bioactivities for metabolic health. In this study, we aimed to evaluate therapeutic effects and the underlying mechanisms of dark tea wine (DTW) on MASLD with obesity. A rat model of MASLD was established by high-fat diet and administered with different doses of DTW as an intervention. The biomarkers of lipid metabolism and oxidative stress in rats were tested. The weight of organs and adipose tissues and the expressions of nuclear factor erythroid 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) were investigated based on the pathology and western blot analysis. We found that DTW enhanced antioxidant capacity via activating the Nrf2/HO-1 signaling pathway, further markedly triggering inhibition of weight gain, reduction of lipid dysfunction, and improvement of pathological characteristics to ameliorate MASLD induced by high-fat diet. These results suggest that DTW is a promising functional supplement for prevention and treatment of MASLD and obesity.
{"title":"Dark Tea Wine Protects Against Metabolic Dysfunction-Associated Steatotic Liver Disease <i>In Vivo</i> Through Activating the Nrf2/HO-1 Antioxidant Signaling Pathway.","authors":"Xiaodong Zhai, Suyang Li, Tongsheng Wang, Jinbo Bai, Fengqing Xu, Wuxi Zhou","doi":"10.1089/jmf.2024.k.0064","DOIUrl":"10.1089/jmf.2024.k.0064","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex and multifactorial disease. Dark tea exhibits great potential for various bioactivities for metabolic health. In this study, we aimed to evaluate therapeutic effects and the underlying mechanisms of dark tea wine (DTW) on MASLD with obesity. A rat model of MASLD was established by high-fat diet and administered with different doses of DTW as an intervention. The biomarkers of lipid metabolism and oxidative stress in rats were tested. The weight of organs and adipose tissues and the expressions of nuclear factor erythroid 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) were investigated based on the pathology and western blot analysis. We found that DTW enhanced antioxidant capacity via activating the Nrf2/HO-1 signaling pathway, further markedly triggering inhibition of weight gain, reduction of lipid dysfunction, and improvement of pathological characteristics to ameliorate MASLD induced by high-fat diet. These results suggest that DTW is a promising functional supplement for prevention and treatment of MASLD and obesity.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"912-921"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-02DOI: 10.1089/jmf.2023.0158
Catherine Ojebbah Attah, Umar Ismail Alhaji, Danladi Amodu Ameh, Gilead Ebiegberi Forcados, Aliyu Muhammad, Musa Bashir, Sani Ibrahim
Garcinia kola is a medicinal food commonly consumed in Sub-Sahara Africa, for which Kolaviron (KV) is the active portion. As a follow-up to our earlier chemopreventive studies, we investigated the chemotherapeutic effects of KV on experimentally induced mammary carcinogenesis in female Wistar rats. Mammary carcinogenesis was induced using 80 mg/kg of 7,12-dimethylbenzanthracene (DMBA) administered by oral gavage. One hundred-fifty days post-DMBA induction, estrogen receptor-α (ER-α) levels were determined in the experimental rats before treatment with KV commenced. Treatment was done using 50, 100, and 200 mg/kg KV thrice a week for 4 weeks, after which the experiment was terminated. Significantly higher levels of estrogen receptor-α, CYP 1A1, malondialdehyde, formation of lobular neoplastic cells, epithelial hyperplasia, lymphocyte infiltration, and increased cytokine (interleukin-6 and tumor necrosis factor-α) activity were observed in DMBA-induced rats, which were attenuated in KV-treated rats. Tyrosine metabolism was exclusively enriched in DMBA-induced rats in contrast to KV-treated rats. Collectively, the results point to the chemotherapeutic potential of KV.
{"title":"<i>In Vivo</i> Chemosuppressive Effects of Kolaviron on 7,12-Dimethylbenzanthracene-Induced Mammary Lesions are Associated with Changes in Levels of Estrogen Receptor-α, CYP 1A1, Proinflammatory Cytokines, and Alterations to Metabolic Pathways Implicated in Mammary Carcinogenesis.","authors":"Catherine Ojebbah Attah, Umar Ismail Alhaji, Danladi Amodu Ameh, Gilead Ebiegberi Forcados, Aliyu Muhammad, Musa Bashir, Sani Ibrahim","doi":"10.1089/jmf.2023.0158","DOIUrl":"10.1089/jmf.2023.0158","url":null,"abstract":"<p><p><i>Garcinia kola</i> is a medicinal food commonly consumed in Sub-Sahara Africa, for which Kolaviron (KV) is the active portion. As a follow-up to our earlier chemopreventive studies, we investigated the chemotherapeutic effects of KV on experimentally induced mammary carcinogenesis in female Wistar rats. Mammary carcinogenesis was induced using 80 mg/kg of 7,12-dimethylbenzanthracene (DMBA) administered by oral gavage. One hundred-fifty days post-DMBA induction, estrogen receptor-α (ER-α) levels were determined in the experimental rats before treatment with KV commenced. Treatment was done using 50, 100, and 200 mg/kg KV thrice a week for 4 weeks, after which the experiment was terminated. Significantly higher levels of estrogen receptor-α, CYP 1A1, malondialdehyde, formation of lobular neoplastic cells, epithelial hyperplasia, lymphocyte infiltration, and increased cytokine (interleukin-6 and tumor necrosis factor-α) activity were observed in DMBA-induced rats, which were attenuated in KV-treated rats. Tyrosine metabolism was exclusively enriched in DMBA-induced rats in contrast to KV-treated rats. Collectively, the results point to the chemotherapeutic potential of KV.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"940-950"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-21DOI: 10.1089/jmf.2023.0016
Sarah Morais Senna Prates, Fernanda L B Mügge, Renata Labanca, Juliana Paula-Souza, Maria G L Brandão
This study traced the cytotoxicity, antioxidant activity, and phytochemical profile before and after in vitro digestion of nuts from Sterculia striata A. St.-Hil. & Naudin (Malvaceae) (chichá or monkey's peanut), a native plant from Brazil, in comparison with Arachis hypogaea L. (peanut). The antioxidant activity in the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Ferric Reducing Antioxidant Power Assay (FRAP) assays was lower in chichá when compared with peanuts, corroborating the lower concentration of polyphenols. None of the samples studied showed significant cytotoxicity in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromideDAD: diode-array detection (MTT) assays. In vitro digestion altered the phytochemical profile in both plants, increasing the concentration of rutin in fresh and roasted chichá but only in raw peanuts. In roasted peanuts, rutin was converted into quercetin. Chichá nuts have been used by the local population for centuries, and the identification of their bioactive components can be useful to promote their benefits as a functional food.
{"title":"Cytotoxicity Screening of <i>Sterculia striata</i> A.St.-Hil. & Naudin (Chichá) and <i>Arachis hypogaea</i> L. (Peanut) and Comparative Chemical Profiles Before and After <i>in Vitro</i> Digestion.","authors":"Sarah Morais Senna Prates, Fernanda L B Mügge, Renata Labanca, Juliana Paula-Souza, Maria G L Brandão","doi":"10.1089/jmf.2023.0016","DOIUrl":"10.1089/jmf.2023.0016","url":null,"abstract":"<p><p>This study traced the cytotoxicity, antioxidant activity, and phytochemical profile before and after <i>in vitro</i> digestion of nuts from <i>Sterculia striata</i> A. St.-Hil. & Naudin (Malvaceae) (chichá or monkey's peanut), a native plant from Brazil, in comparison with <i>Arachis hypogaea</i> L. (peanut). The antioxidant activity in the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Ferric Reducing Antioxidant Power Assay (FRAP) assays was lower in chichá when compared with peanuts, corroborating the lower concentration of polyphenols. None of the samples studied showed significant cytotoxicity in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromideDAD: diode-array detection (MTT) assays. <i>In vitro</i> digestion altered the phytochemical profile in both plants, increasing the concentration of rutin in fresh and roasted chichá but only in raw peanuts. In roasted peanuts, rutin was converted into quercetin. Chichá nuts have been used by the local population for centuries, and the identification of their bioactive components can be useful to promote their benefits as a functional food.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":"1004-1008"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Betaine is the major water-soluble component of Lycium chinensis. Although there are reports of a protective effect of betaine on fatty liver disease, the underlying mechanisms are unclear. We attempted to elucidate the molecular regulation of betaine on hyperglycemia-induced hepatic lipid accumulation via Forkhead box O (FoxO)6 activation. HepG2 cells and liver tissue isolated from db/db mice treated with betaine were used. The present study investigated whether betaine ameliorates hepatic steatosis by inhibiting FoxO6/peroxisome proliferator-activated receptor gamma (PPARγ) signaling in liver cells. Interestingly, betaine notably decreased lipid accumulation in tissues with FoxO6-induced mRNA expression of lipogenesis-related genes. Furthermore, betaine inhibited the FoxO6 interaction with PPARγ and cellular triglycerides in high-glucose- or FoxO6-overexpression-treated liver cells. In addition, we confirmed that betaine administration via oral gavage significantly ameliorated hepatic steatosis in db/db mice. We conclude that betaine ameliorates hepatic steatosis, at least in part, by inhibiting the interaction between FoxO6 and PPARγ, thereby suppressing lipogenic gene transcription.
{"title":"Betaine Suppresses Lipid Accumulation in Liver: Inhibition of FoxO6 and PPARγ Interaction.","authors":"Min Hi Park,Dae Hyun Kim","doi":"10.1089/jmf.2024.k.0150","DOIUrl":"https://doi.org/10.1089/jmf.2024.k.0150","url":null,"abstract":"Betaine is the major water-soluble component of Lycium chinensis. Although there are reports of a protective effect of betaine on fatty liver disease, the underlying mechanisms are unclear. We attempted to elucidate the molecular regulation of betaine on hyperglycemia-induced hepatic lipid accumulation via Forkhead box O (FoxO)6 activation. HepG2 cells and liver tissue isolated from db/db mice treated with betaine were used. The present study investigated whether betaine ameliorates hepatic steatosis by inhibiting FoxO6/peroxisome proliferator-activated receptor gamma (PPARγ) signaling in liver cells. Interestingly, betaine notably decreased lipid accumulation in tissues with FoxO6-induced mRNA expression of lipogenesis-related genes. Furthermore, betaine inhibited the FoxO6 interaction with PPARγ and cellular triglycerides in high-glucose- or FoxO6-overexpression-treated liver cells. In addition, we confirmed that betaine administration via oral gavage significantly ameliorated hepatic steatosis in db/db mice. We conclude that betaine ameliorates hepatic steatosis, at least in part, by inhibiting the interaction between FoxO6 and PPARγ, thereby suppressing lipogenic gene transcription.","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":"30 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}