Given the importance of discovering plant species from the Brazilian Cerrado biome with anticancer potential, this study evaluated the antitumor activity of two extracts of Campomanesi adamantium fruits in in vitro and in vivo models of melanoma lung metastasis. Pulp and peel extracts (DEGPU and DEGPE, respectively) were extracted from fresh fruit using dichloromethane as a solvent. As cytotoxicity parameter, concentration values that inhibited 50% cell growth (GI50), total growth inhibition (TGI), and selectivity index (SI) were established. The melanoma lung metastasis model was obtained by injecting 5 × 105/50 μL B16-F10 cells via the tail vein of mice, which received treatment on the 15th day. Metastatic lungs were collected for fluorescence analysis with the IR-780 marker and also macro- and microscopic assessment. In vitro analyses showed that DEGPU was active in K562 (GI50 32.99; TGI 47.93) and U-251 (GI50 32.10; TGI 249.92), whereas DEGPE showed better cytotoxicity results for all tumor cell lines, but was more efficient in K562 (GI50 27.42; TGI 40.20) and U-251 (GI50 4.89; TGI 12.77). Both showed a cytocidal effect on B16F10 at the highest concentration tested, with approximately 25% (DEGPU) and 88% (DEGPE) of cell death. In vivo analyzes showed that both extracts showed significant activity in metastatic lung. Fluorescence images showed differences in intensity between groups owing to greater tumor involvement. Macro- and microscopic images showed that treatments with extracts limited tumor growth and prevented proliferation. The extracts tested have promising activity, thus requiring further research on their active compounds.
Spirulina maxima is a cyanobacterium considered a "superfood" due to its metabolites and nutrient content. These include a complex mixture of minerals, vitamins, fatty acids, proteins, and accessory pigments. In recent years, it has positioned itself as a promising source of bioactive molecules for the treatment of several diseases, including metabolic syndrome, coronary diseases, cancer, and the improvement of health modulating oxidative stress. C-Phycocyanin (C-PC) is a photosynthetic pigment from green-blue cyanobacterium and the most abundant phycobiliprotein in the Spirulina genus with various pharmacological properties attributed due to its antioxidant capacity but has no specific cellular target. This has made it a molecule of great interest in biomedical research. This review focuses on the pharmacological effects and the benefits on metabolic syndrome and oxidative stress of C-PC.
Cotton is primarily recognized as a textile crop; however, recent evidence suggests that cottonseed oil (CSO) may be a simple and effective dietary approach to improving cardiometabolic risk factors. The purpose of this perspective is to draw attention to the current literature examining the physiological benefits of CSO consumption and highlight the remaining questions that need to be answered to fully evaluate the potential of CSO to be the next important nutrition intervention for improving cardiometabolic health.
Gastric cancer (GC) is a prevalent malignancy affecting the gastrointestinal tract. Weifuchun (WFC), a Chinese herbal prescription comprising red ginseng, Isodon amethystoides, and Fructus aurantii, is widely used in China for various chronic stomach disorders. However, its therapeutic role and mechanisms in treating GC remain unexplored. In a randomized, controlled, single-blind trial involving postoperative stages II and III GC patients, we compared adjuvant chemotherapy plus WFC (chemo plus WFC group) to adjuvant chemotherapy alone (chemo group) over 6 months. We assessed recurrence and metastasis rates and used systematic pharmacology to predict WFC's active components, screen target genes, and construct network interaction maps, were validated through in vitro experiments. The combined therapy significantly reduced 2-year recurrence and metastasis rates. We identified 67 active ingredients, 211 drug target proteins, 1539 disease targets, 105 shared targets, and 188 signaling pathways associated with WFC. WFC impacted cell apoptosis, proliferation, and the inflammatory response, with top tumor-related signaling pathways involving 5'-adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase, nuclear factor kappa-B (NFKB), and apoptosis. In vitro, WFC inhibited proliferation and migration while inducing apoptosis in GC cells, reduced VEGFA, TNFa, and IL6 expressions. Immunocytochemistry showed increased p-AMPK staining, and molecular analysis revealed decreased NFKB and phosphorylation of extracellular-regulated protein kinase 1/2 (ERK1/2) levels, increased p-AMPK and BAX protein levels in WFC-treated cells, effects reversed by Compound C. WFC's antitumor effects involve AMPK-dependent ERK1/2 and NFKB pathways, regulating proliferation, migration, and apoptosis in GC cells.
Background: Imbalances in gut microbiota and subsequent destabilization of intestinal barrier equilibrium have been related to the evolution of metabolic disorders. Goji berries (Lycium barbarum; GB) and their fermented counterpart (FGB) have been identified for their prebiotic capacity in managing intestinal barrier functions and inflammatory profiles Consequently, this research was designed to investigate the effects of supplementing GB and FGB on intestinal integrity, inflammation, and changes in the composition of gut microbiota in high-fat (HF)-fed rats. Materials and Methods: Thirty-two male Sprague-Dawley rats (6 weeks old, 8 per group) were divided into four categories based on their weight and provided with either respective diets over a 6-week period: low-fat (LF; 10% of calories from fat), HF (45% of calories from fat), and HF diets supplemented with either GB or FGB at a 2% (w/w). Results: Supplementation of GB and FGB resulted in compositional changes in the gut microbiota, denoted by a distinct abundance of Faecalibacterium prausnitzii with GB and Akkermansia muciniphila species with FGB, which have been linked to ameliorated obesity phenotypes and metabolic parameters. These alterations were correlated with enhancements in gut barrier integrity, thereby protecting against local and systemic inflammation induced by a HF diet. Supplementation with GB and FGB also mitigated lipopolysaccharide-induced inflammation through inhibition of its downstream pathway. Conclusion: These findings indicate that both GB and FGB supplementation can improve gut barrier function and inflammatory profiles in HF-fed rats via modulation of the microbial composition of the gut, supporting the potential application of GB and FGB in improving gut barrier function and managing inflammation amid metabolic challenges.
Declines in estrogen levels occur in women transitioning to menopause. Estrogen hormones play important roles in multiple systems of the body, and estrogen loss is associated with a variety of symptoms that can decrease quality of life. The gut microbiota is involved in regulating endogenous estrogen levels. A portion of estrogen glucuronides can be reactivated in the gut by the microbial enzyme β-glucuronidase, and the resulting free estrogens can return to the bloodstream. Here, we carried out in vitro screening of β-glucuronidase activities for 84 strains belonging to 16 different species of lactic acid bacteria and bifidobacteria and found that one and three strains of Levilactobacillus brevis and Lacticasebacillus rhamnosus, respectively, can deconjugate estrogens. Among these strains, L. brevis KABP052 had the highest β-glucuronidase activity. Moreover, in an exploratory, randomized, double-blind, placebo-controlled trial, we demonstrated that serum estrogen levels in healthy peri- and postmenopausal women given a probiotic formula containing KABP052 were maintained over time, whereas levels significantly decreased in the group given a placebo. Significantly higher levels of estradiol (31.62 ± 7.97 pg/mL vs. 25.12 ± 8.17 pg/mL) and estrone (21.38 ± 8.57 pg/mL vs. 13.18 ± 8.77 pg/mL) were observed in the probiotic versus placebo group after 12 weeks of intervention. This clinical study demonstrated for the first time the estrogen modulation capacity of a probiotic formula containing a bacterial strain having β-glucuronidase activity in women during the menopausal transition and formed the basis for future investigations using probiotics in the menopausal population.
Lipolysis is the hydrolysis of triglycerides (TGs), commonly known as fats. Intracellular lipolysis of TG is associated with adipose triglyceride lipase (ATGL), which provides fatty acids during times of metabolic need. The aim of this study was to determine whether Coix lacryma-jobi L. var. ma-yuen Stapf (Coix) sprouts (CS) can alleviate obesity through lipolysis. Overall, we investigated the potential of CS under in vitro and in vivo conditions and confirmed the underlying mechanisms. Huh7 cells were exposed to free fatty acids (FFAs), and C57BL/6J mice were fed a 60% high-fat diet. When FFA were introduced into Huh7 cells, the intracellular TG levels increased within the Huh7 cells. However, CS treatment significantly reduced intracellular TG levels. Furthermore, CS decreased the expression of Pparγ and Srebp1c mRNA and downregulated the mutant Pnpla3 (I148M) mRNA. Notably, CS significantly upregulated ATGL expression. CS treatment at a dose of 200 mg/kg/day resulted in a significant and dose-dependent decrease in body weight gain and epididymal adipose tissue weight. Specifically, the group treated with CS (200 mg/kg/day) exhibited a significant modulation of serum lipid biomarkers. In addition, CS ameliorated histological alterations in both the liver and adipose tissues. In summary, CS efficiently inhibited lipid accumulation through the activation of the lipolytic enzyme ATGL coupled with the suppression of enzymes involved in TG synthesis. Consequently, CS show promise as a potential anti-obesity agent.
Acorus gramineus has a number of beneficial effects, including protective effects against age-related disorders. In this study, the effects of A. gramineus on testosterone production and andropause symptoms were evaluated. We first treated TM3 mouse Leydig cells, responsible for testosterone production, with A. gramineus aqueous extract at different concentrations. In TM3 cells, the testosterone concentration increased in a concentration-dependent manner compared with those in the control. In addition, at 400 μg/mL extract, the mRNA expression level of the steroidogenic enzyme CYP11A1 was increased. Subsequently, 23-week-old Sprague-Dawley (SD) rats exhibiting an age-related reduction in serum testosterone (approximately 80% lower than that in 7-week-old SD rats) were administered A. gramineus aqueous extract for 8 weeks. Serum total testosterone and free testosterone levels were higher and serum estradiol, prostate-specific antigen levels, and total cholesterol levels were lower in the AG50 group (A. gramineus aqueous extract 50 mg/kg of body weight/day) than in the OLD (control group). The AG50 group also showed significant elevations in sperm count, grip strength, and mRNA expression of StAR, CYP11A1, 17β-HSD, and CYP17A1 compared with those in the OLD group. In conclusion, A. gramineus aqueous extract facilitated steroidogenesis in Leydig cells, elevated testosterone levels, lowered serum estradiol and total cholesterol levels, and increased muscle strength and sperm count, thus alleviating the symptoms of andropause. These findings suggest that A. gramineus aqueous extract is a potentially effective therapeutic agent against various symptoms associated with andropause.
Chronic noncommunicable diseases are a global health problem causing increased rates of mortality and sick leaves, which can be reduced by controlling dyslipidemia and hyperglycemia. Experimental and clinical studies have demonstrated the antidiabetic, lipid-lowering, antiobesogenic, anti-inflammatory, and antihypertensive properties of cinnamon; therefore, its use in yogurt can help reverse the effects of these diseases. Our study aims to evaluate the effect of a microencapsulated aqueous extract of cinnamon (Cinnamomum zeylanicum) (MCE Cz) incorporated in a yogurt drink on metabolic syndrome (MS) in a rabbit (Oryctolagus cuniculus). Physicochemical, microbiological, and proximal chemical characterization; total phenol, flavonoid, and 2,2-diphenyl-1-picrylhydrazil activity quantification; intestinal bioaccessibility; sensory analysis; MS induction through diet; and treatment with 5, 10, and 20 mg/kg of flavonoids contained in the MCE Cz were performed to help evaluate morphological, biochemical, and lipid peroxidation measurements in the liver and heart. The results show that the addition of MCE Cz in the yogurt modified the yogurt texture, increased its adhesiveness and firmness, and imparted a characteristic cinnamon color and biological value by providing intestinally bioaccessible antioxidants with antioxidant potential by reducing lipoperoxidation in the liver and heart after treatment. MCE Cz reduced the weight of the animals by up to 38.5% and the abdominal circumference by 29%. Biochemically, it decreased glucose levels by 24.38%, total cholesterol levels by 69.2%, triglyceride levels by 72.69%, and low-density lipoprotein levels by 89.25%; it increased high-density lipoprotein levels by 67.08%. Therefore, adding MCE Cz in doses of 5 and 10 mg of flavonoids in drinkable yogurt can be an alternative to preparing functional foods with physicochemical attributes and biological properties that can be consumed at all stages of life without undesirable effects. Moreover, it can act as a potential adjuvant in the treatment of comorbidities related to MS.