Pub Date : 2018-01-01DOI: 10.4172/2324-8777.1000256
G. Uzma, A. Siddiqa, Q. Hayat
Ni-Zn ferrite (NixZn1-xFe2O4, for x=0, 0.1, 0.3, 0.5, 0.7) nanoparticles have been successfully synthesized using chemical coprecipitation method for two different compositions of nickel nitrides (Ni(NO3)2.6H2O) and nickel chlorides (NiCl2.6H2O) respectively. X-ray analysis explored that nanoparticles for each value of x have cubic spinal structure. No extra peaks were observed in XRD spectra indicating the absence of any un-reacted component in the samples for both the series. The d-spacing and lattice parameter were found to lay in the range of 2.54 Ao to 2.51 Ao and 8.42 Ao to 8.33 Ao for nickel chloride series and 2.56 Ao to 2.54 Ao and 8.49 Ao to 8.42 Ao for nickel nitride series respectively. Both of these decreased by increasing Ni doping due to the less ionic radius of Ni2+ ions then Zn2+ and for strong preference of Ni2+ ions for octahedral sites. The crystallite size was observed to vary between 10-13 nm and its value is maximum for x=0.3 for nickel chloride series, whereas it vary between 18-36 nm and its value is maximum for x=0.5 and x=0.7 which shows that by adding nickel chloride a better result of 10 nm is achieved at x=0.7 whereas, 18 nm is achieved at x=0.1 and it increases by increasing nickel nitride.
{"title":"A Comparative Study on Impact of Nickel Nitrates and Nickel Chloride on the Structural Properties of ZnFe2O4 Nanostructures","authors":"G. Uzma, A. Siddiqa, Q. Hayat","doi":"10.4172/2324-8777.1000256","DOIUrl":"https://doi.org/10.4172/2324-8777.1000256","url":null,"abstract":"Ni-Zn ferrite (NixZn1-xFe2O4, for x=0, 0.1, 0.3, 0.5, 0.7) nanoparticles have been successfully synthesized using chemical coprecipitation method for two different compositions of nickel nitrides (Ni(NO3)2.6H2O) and nickel chlorides (NiCl2.6H2O) respectively. X-ray analysis explored that nanoparticles for each value of x have cubic spinal structure. No extra peaks were observed in XRD spectra indicating the absence of any un-reacted component in the samples for both the series. The d-spacing and lattice parameter were found to lay in the range of 2.54 Ao to 2.51 Ao and 8.42 Ao to 8.33 Ao for nickel chloride series and 2.56 Ao to 2.54 Ao and 8.49 Ao to 8.42 Ao for nickel nitride series respectively. Both of these decreased by increasing Ni doping due to the less ionic radius of Ni2+ ions then Zn2+ and for strong preference of Ni2+ ions for octahedral sites. The crystallite size was observed to vary between 10-13 nm and its value is maximum for x=0.3 for nickel chloride series, whereas it vary between 18-36 nm and its value is maximum for x=0.5 and x=0.7 which shows that by adding nickel chloride a better result of 10 nm is achieved at x=0.7 whereas, 18 nm is achieved at x=0.1 and it increases by increasing nickel nitride.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"33 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89516988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-c7-039
J. Sikora
{"title":"Mechanical and thermal properties of polyethylene modified with different natural fillers","authors":"J. Sikora","doi":"10.4172/2324-8777-c7-039","DOIUrl":"https://doi.org/10.4172/2324-8777-c7-039","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"128 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90617363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-c9-044
Moneer M. Basuni
{"title":"New green nanomaterials for applications in energy sector","authors":"Moneer M. Basuni","doi":"10.4172/2324-8777-c9-044","DOIUrl":"https://doi.org/10.4172/2324-8777-c9-044","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"92 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80374612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777.1000253
M. Allahyari, K. Abbaspour-sani, I. Kotcioglu, M. Khalaji
Thermal conductivity is an important characteristic of a nanofluid. This paper presents models for the prediction of the effective thermal conductivity of titanium oxide based on water by used of dimensionless groups. The models express the thermal conductivity of a nanofluid as a function of the thermal conductivity of interfacial shell, interfacial thickness and volume fraction. The model of effective thermal conductivity is divided into four regions by analysis of present models for the regions and can be obtained an effective value of dependence parameter. The model showed for volume fraction less than 1% and diameters less than 20 nm intensity of increase thermal conductivity is much more than other region. As we know, with decrease of concentration, the viscosity of nanofluid decreased, so this region is the best region for application of heat transfer devices because the pressure drop also decreased.
{"title":"A New Method for Analysis of Anomalous Increases in Thermal Conductivity of TiO2-Water Nanofluid","authors":"M. Allahyari, K. Abbaspour-sani, I. Kotcioglu, M. Khalaji","doi":"10.4172/2324-8777.1000253","DOIUrl":"https://doi.org/10.4172/2324-8777.1000253","url":null,"abstract":"Thermal conductivity is an important characteristic of a nanofluid. This paper presents models for the prediction of the effective thermal conductivity of titanium oxide based on water by used of dimensionless groups. The models express the thermal conductivity of a nanofluid as a function of the thermal conductivity of interfacial shell, interfacial thickness and volume fraction. The model of effective thermal conductivity is divided into four regions by analysis of present models for the regions and can be obtained an effective value of dependence parameter. The model showed for volume fraction less than 1% and diameters less than 20 nm intensity of increase thermal conductivity is much more than other region. As we know, with decrease of concentration, the viscosity of nanofluid decreased, so this region is the best region for application of heat transfer devices because the pressure drop also decreased.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84238203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-C10-047
David Patino Ruiz
{"title":"Modification of cotton fibers with magnetite and magnetic core-shell mesoporous silica nanoparticles","authors":"David Patino Ruiz","doi":"10.4172/2324-8777-C10-047","DOIUrl":"https://doi.org/10.4172/2324-8777-C10-047","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"136 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78857279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-C3-025
Micha Silver
{"title":"Challenges for materials science in the 21st century","authors":"Micha Silver","doi":"10.4172/2324-8777-C3-025","DOIUrl":"https://doi.org/10.4172/2324-8777-C3-025","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78865980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-C7-037
D. Parish
{"title":"Inorganic/organic hybridized polymers for use in various high performance applications","authors":"D. Parish","doi":"10.4172/2324-8777-C7-037","DOIUrl":"https://doi.org/10.4172/2324-8777-C7-037","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84348086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-C2-023
C. Bonafos
{"title":"Ion beam synthesis of multifunctional Ag nanocrystals embedded in a dielectric matrix","authors":"C. Bonafos","doi":"10.4172/2324-8777-C2-023","DOIUrl":"https://doi.org/10.4172/2324-8777-C2-023","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78595880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777-c1-020
Gunn Kim
{"title":"Electronic structures of van der Waals graphene/periodically porous graphene heterostructures","authors":"Gunn Kim","doi":"10.4172/2324-8777-c1-020","DOIUrl":"https://doi.org/10.4172/2324-8777-c1-020","url":null,"abstract":"","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79091111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2324-8777.1000248
Nur Atikah bt Adnan, A. Ramasamy
Impact of nanoparticle shapes on non-Darcy mixed convection boundary layer flow over an impermeable horizontal flat plat embedded in a porous medium saturated by a nanofluid has been investigated. In distinctly most paramount studies, three types of nanoparticle shapes are employed into these studies namely sphere, cylinder and lamina. The controlling Partial Differential Equations are regenerated into a set of ordinary differential equations by manipulating similarity transformation and it is determined numerically by using Runge Kutta Fehlberg method with shooting technique from MAPLE 18. The surface of the plate is maintained at a constant temperature and constant nanoparticle volume fraction. Temperature profiles are graphically and tabular provided for the effects of mixed convection parameter, initial parameter, volume fraction parameter and empirical shape factor. The results show that solid volume fraction and nanoparticle shapes have powerful outputs in non-Darcy flow. Laminar nanoparticle shapes predicts a better results on heat transfer rather than other nanoparticle shapes.
{"title":"Nanoparticle Shapes Effects on Non-Darcy Mixed Convection from a Horizontal Plate Embedded in Water, Ethylene Glycol and Engine Based Cu, Al2O3 and SWCNTs Porous Media","authors":"Nur Atikah bt Adnan, A. Ramasamy","doi":"10.4172/2324-8777.1000248","DOIUrl":"https://doi.org/10.4172/2324-8777.1000248","url":null,"abstract":"Impact of nanoparticle shapes on non-Darcy mixed convection boundary layer flow over an impermeable horizontal flat plat embedded in a porous medium saturated by a nanofluid has been investigated. In distinctly most paramount studies, three types of nanoparticle shapes are employed into these studies namely sphere, cylinder and lamina. The controlling Partial Differential Equations are regenerated into a set of ordinary differential equations by manipulating similarity transformation and it is determined numerically by using Runge Kutta Fehlberg method with shooting technique from MAPLE 18. The surface of the plate is maintained at a constant temperature and constant nanoparticle volume fraction. Temperature profiles are graphically and tabular provided for the effects of mixed convection parameter, initial parameter, volume fraction parameter and empirical shape factor. The results show that solid volume fraction and nanoparticle shapes have powerful outputs in non-Darcy flow. Laminar nanoparticle shapes predicts a better results on heat transfer rather than other nanoparticle shapes.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"81 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79273450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}