Pub Date : 2023-10-16eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0047
{"title":"Society of Nematologists 1961.","authors":"","doi":"10.2478/jofnem-2023-0047","DOIUrl":"10.2478/jofnem-2023-0047","url":null,"abstract":"","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230047"},"PeriodicalIF":1.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-04eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0039
Ricky Critchfield, Jaden King, John Bonkowski, Darcy Telenko, Tom Creswell, Lei Zhang
The soybean cyst nematode (SCN, Heterodera glycines) is the most yield-limiting pathogen of soybean in the US. This study was carried out in order to provide updated information on SCN virulence phenotypes in Indiana. A total of 124 soil samples were collected from soybean fields in 2020 and all of them tested positive for SCN. The virulence phenotypes of 42 representative SCN populations were determined with seven soybean indicator lines using the standard HG type test. The most predominant HG types were 2.5.7 and 1.2.5.7, which accounted for 64% and 14% of the SCN populations tested, respectively. None of the SCN populations tested were rated as HG type 0, compared with 28% of the populations in a previous survey in Indiana during 2006-2008. Nearly 88% of the SCN populations evaluated in this study overcame the resistance provided by PI 88788, which is the most common source of resistance in soybean, up from 56% in the 2006-2008 survey. Approximately 14% of SCN populations tested were virulent to PI 548402 (Peking), in contrast to 0% in the 2006-2008 survey. This study reveals a trend of increasing virulence of SCN populations to resistant sources of soybean in Indiana. The results highlighted the importance of rotating soybean varieties with different types of resistance and identifying new sources of resistance for sustainable management of SCN.
{"title":"Characterization of Virulence Phenotypes of <i>Heterodera glycines</i> during 2020 in Indiana.","authors":"Ricky Critchfield, Jaden King, John Bonkowski, Darcy Telenko, Tom Creswell, Lei Zhang","doi":"10.2478/jofnem-2023-0039","DOIUrl":"10.2478/jofnem-2023-0039","url":null,"abstract":"<p><p>The soybean cyst nematode (SCN, <i>Heterodera glycines</i>) is the most yield-limiting pathogen of soybean in the US. This study was carried out in order to provide updated information on SCN virulence phenotypes in Indiana. A total of 124 soil samples were collected from soybean fields in 2020 and all of them tested positive for SCN. The virulence phenotypes of 42 representative SCN populations were determined with seven soybean indicator lines using the standard HG type test. The most predominant HG types were 2.5.7 and 1.2.5.7, which accounted for 64% and 14% of the SCN populations tested, respectively. None of the SCN populations tested were rated as HG type 0, compared with 28% of the populations in a previous survey in Indiana during 2006-2008. Nearly 88% of the SCN populations evaluated in this study overcame the resistance provided by PI 88788, which is the most common source of resistance in soybean, up from 56% in the 2006-2008 survey. Approximately 14% of SCN populations tested were virulent to PI 548402 (Peking), in contrast to 0% in the 2006-2008 survey. This study reveals a trend of increasing virulence of SCN populations to resistant sources of soybean in Indiana. The results highlighted the importance of rotating soybean varieties with different types of resistance and identifying new sources of resistance for sustainable management of SCN.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230039"},"PeriodicalIF":1.3,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0035
Rebeca Sandoval-Ruiz, Zane J Grabau
Rotylenchulus reniformis (reniform nematode, RN) is an important pathogen in cotton production. Cultural practices such as crop rotation and biofumigation-management of soil pathogens by biocidal compounds from crop residues-may help manage RN. The objective of this study was to evaluate the efficacy of winter crops for RN management through combinations of rotation and crop residue incorporation in a cotton greenhouse experiment. A total of 10 treatments were evaluated in soil inoculated with RN: three winter crops (carinata, oat, or hairy vetch) grown in rotation with no shoot organic matter (OM) incorporated (1-3), fresh shoot OM incorporated (4-6), or dry shoot OM incorporated (7-9), and a fallow control (10). Roots were re-incorporated in all treatments except fallow. Subsequently, cotton was grown. Oat and fallow were better rotation crops to lower soil RN abundances at winter crop termination than hairy vetch and carinata. After the OM incorporation treatments and cotton growth, oat was generally more effective at managing RN in cotton than carinata or hairy vetch. Within each crop, incorporation treatment generally did not affect RN management. Cotton growth was not consistently affected by the treatments.
{"title":"Reniform Nematode Management Using Winter Crop Rotation and Residue Incorporation Methods in Greenhouse Experiments.","authors":"Rebeca Sandoval-Ruiz, Zane J Grabau","doi":"10.2478/jofnem-2023-0035","DOIUrl":"10.2478/jofnem-2023-0035","url":null,"abstract":"<p><p><i>Rotylenchulus reniformis</i> (reniform nematode, RN) is an important pathogen in cotton production. Cultural practices such as crop rotation and biofumigation-management of soil pathogens by biocidal compounds from crop residues-may help manage RN. The objective of this study was to evaluate the efficacy of winter crops for RN management through combinations of rotation and crop residue incorporation in a cotton greenhouse experiment. A total of 10 treatments were evaluated in soil inoculated with RN: three winter crops (carinata, oat, or hairy vetch) grown in rotation with no shoot organic matter (OM) incorporated (1-3), fresh shoot OM incorporated (4-6), or dry shoot OM incorporated (7-9), and a fallow control (10). Roots were re-incorporated in all treatments except fallow. Subsequently, cotton was grown. Oat and fallow were better rotation crops to lower soil RN abundances at winter crop termination than hairy vetch and carinata. After the OM incorporation treatments and cotton growth, oat was generally more effective at managing RN in cotton than carinata or hairy vetch. Within each crop, incorporation treatment generally did not affect RN management. Cotton growth was not consistently affected by the treatments.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230035"},"PeriodicalIF":1.3,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10272922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0037
Renáta Petrikovszki, Ferenc Tóth, Péter I Nagy
While the nematicidal effectiveness of mulching against root-knot nematodes (Meloidogyne spp.) is calculated within organic crop protection, underlying mechanisms are not yet fully explored. Laboratory experiments were set up to determine whether mulch-derived substances cause mortality directly, or repel Meloidogyne juveniles from crop rhizosphere. Mortality and area choice tests were conducted with mulch-derived extracts, supported by the measurements on tannic acid content and the pH values of extracts as supplementary examinations. In our study, leaf litter and straw extracts were generally found lethal to the juveniles, which is in line with the results from area preference tests. However, compost extract had no effect on Meloidogyne incognita juveniles. Tannic acid content showed positive correlation with mortality only in the case of straw and sycamore leaf litter extracts. Tannic acid and pH weakly correlated with repellent effect of the applied extracts generally. Our results have inspired further experiments to explore nematicidal components of leaf litters, contributing to the development of a new approach in crop protection based on the repellent effect of these materials.
{"title":"Aqueous Extracts of Organic Mulch Materials Have Nematicide and Repellent Effect on <i>Meloidogyne incognita</i> Infective Juveniles: A Laboratory Study.","authors":"Renáta Petrikovszki, Ferenc Tóth, Péter I Nagy","doi":"10.2478/jofnem-2023-0037","DOIUrl":"10.2478/jofnem-2023-0037","url":null,"abstract":"<p><p>While the nematicidal effectiveness of mulching against root-knot nematodes (<i>Meloidogyne</i> spp.) is calculated within organic crop protection, underlying mechanisms are not yet fully explored. Laboratory experiments were set up to determine whether mulch-derived substances cause mortality directly, or repel <i>Meloidogyne</i> juveniles from crop rhizosphere. Mortality and area choice tests were conducted with mulch-derived extracts, supported by the measurements on tannic acid content and the pH values of extracts as supplementary examinations. In our study, leaf litter and straw extracts were generally found lethal to the juveniles, which is in line with the results from area preference tests. However, compost extract had no effect on <i>Meloidogyne incognita</i> juveniles. Tannic acid content showed positive correlation with mortality only in the case of straw and sycamore leaf litter extracts. Tannic acid and pH weakly correlated with repellent effect of the applied extracts generally. Our results have inspired further experiments to explore nematicidal components of leaf litters, contributing to the development of a new approach in crop protection based on the repellent effect of these materials.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230037"},"PeriodicalIF":1.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10230446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0030
Leonardo F Rocha, Mary E Kinsel, Jason P Bond, Ahmad M Fakhoury
We previously reported soybean fields double-cropped with winter wheat having reduced soybean cyst nematode (SCN) (Heterodera glycines) counts compared to fallow. A follow-up metagenomics study identified several fungal and bacterial taxa enriched in wheat fields, and some were reported to parasitize SCN. Knowing that phytocompounds with potential nematicidal activity are released via wheat roots and stubble, we implemented a dichloromethane-based extraction method and a gas chromatography-mass spectrometry (GCMS) system to investigate soil chemical profiles of samples collected from these fields and review the potential nematicidal activity of compounds with higher concentration in double cropping fields. 51 compounds were detected during the GCMS analysis, eight with unknown identification. Several compounds, including multiple fatty acids, had larger relative peak areas when double-cropped, compared to fallow samples. This study, along with our previously published one, provided a better understanding of the mechanisms that govern the effect of wheat on SCN populations. Rather than driven by a single mechanism, the suppression of SCN in soybean fields double-cropped with winter wheat was potentially linked to enriched microbial communities, increased populations of beneficial organisms, and higher concentrations of chemicals with potential nematicidal activity. To our knowledge, this is the first study using GCMS to characterize soil chemical profiles in soybean fields double-cropped with winter wheat regarding the suppression of SCN populations.
{"title":"Chemical Profiles of <i>Heterodera glycines</i> Suppressive Soils in Double Cropping Soybean Production.","authors":"Leonardo F Rocha, Mary E Kinsel, Jason P Bond, Ahmad M Fakhoury","doi":"10.2478/jofnem-2023-0030","DOIUrl":"10.2478/jofnem-2023-0030","url":null,"abstract":"<p><p>We previously reported soybean fields double-cropped with winter wheat having reduced soybean cyst nematode (SCN) (<i>Heterodera glycines</i>) counts compared to fallow. A follow-up metagenomics study identified several fungal and bacterial taxa enriched in wheat fields, and some were reported to parasitize SCN. Knowing that phytocompounds with potential nematicidal activity are released via wheat roots and stubble, we implemented a dichloromethane-based extraction method and a gas chromatography-mass spectrometry (GCMS) system to investigate soil chemical profiles of samples collected from these fields and review the potential nematicidal activity of compounds with higher concentration in double cropping fields. 51 compounds were detected during the GCMS analysis, eight with unknown identification. Several compounds, including multiple fatty acids, had larger relative peak areas when double-cropped, compared to fallow samples. This study, along with our previously published one, provided a better understanding of the mechanisms that govern the effect of wheat on SCN populations. Rather than driven by a single mechanism, the suppression of SCN in soybean fields double-cropped with winter wheat was potentially linked to enriched microbial communities, increased populations of beneficial organisms, and higher concentrations of chemicals with potential nematicidal activity. To our knowledge, this is the first study using GCMS to characterize soil chemical profiles in soybean fields double-cropped with winter wheat regarding the suppression of SCN populations.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230030"},"PeriodicalIF":1.4,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0033
R Mouniga, B Anita, A Lakshmanan, A Shanthi, G Karthikeyan
Chitosan is the second most abundant bio-polymer available in the world, second only to cellulose. It is found in crustaceous shells, e.g., those of crabs, shrimps, prawns, and fungi, as well as insect exoskeletons. The use of nanoformulations for the management of pests and diseases is receiving increased interest with the advancement of nanotechnology. Here, chitosan nanospheres were obtained from chitosan using the ionic gelation technique. The nanoformulations obtained were characterized using a particle size analyzer, Fourier transform infrared spectroscopy, and a transmission electron microscope. The efficacy of chitosan nanospheres in suppressing the root-knot nematode Meloidogyne incognita was studied. The particle size of nanospheres formulated for this study was 380.2 nm, with a polydispersity index (PI) of 0.4 and Zeta potential of 45.7 or 50.9 mV at pH 5.2. The chitosan nanospheres were spherical and the particles did not agglomerate. FTIR spectra of the chitosan nanospheres peaked at 3334 cm-1, thereby indicating the stretching of the OH and NH group. In In-vitro studies, chitosan nanospheres showed significant nematicidal activity against M. incognita. Under pot culture conditions, chitosan nanospheres (1%- active compound chitosan) at 2ml/plant decreased the nematode population in roots or soil. Compared to the control, the number of galls was reduced by 83.68%, the number of egg masses by 83.85%, the number of adult females by 66.56%, and the number of second-stage juveniles by 73.20%. In a field experiment, application of chitosan nanospheres (1%) was followed by a 18.75% increase in fruit yield compared to the non-treated control.
{"title":"Nematicidal Properties of Chitosan Nanoformulation.","authors":"R Mouniga, B Anita, A Lakshmanan, A Shanthi, G Karthikeyan","doi":"10.2478/jofnem-2023-0033","DOIUrl":"10.2478/jofnem-2023-0033","url":null,"abstract":"<p><p>Chitosan is the second most abundant bio-polymer available in the world, second only to cellulose. It is found in crustaceous shells, e.g., those of crabs, shrimps, prawns, and fungi, as well as insect exoskeletons. The use of nanoformulations for the management of pests and diseases is receiving increased interest with the advancement of nanotechnology. Here, chitosan nanospheres were obtained from chitosan using the ionic gelation technique. The nanoformulations obtained were characterized using a particle size analyzer, Fourier transform infrared spectroscopy, and a transmission electron microscope. The efficacy of chitosan nanospheres in suppressing the root-knot nematode <i>Meloidogyne incognita</i> was studied. The particle size of nanospheres formulated for this study was 380.2 nm, with a polydispersity index (PI) of 0.4 and Zeta potential of 45.7 or 50.9 mV at pH 5.2. The chitosan nanospheres were spherical and the particles did not agglomerate. FTIR spectra of the chitosan nanospheres peaked at 3334 cm<sup>-1</sup>, thereby indicating the stretching of the OH and NH group. In In-vitro studies, chitosan nanospheres showed significant nematicidal activity against <i>M. incognita</i>. Under pot culture conditions, chitosan nanospheres (1%- active compound chitosan) at 2ml/plant decreased the nematode population in roots or soil. Compared to the control, the number of galls was reduced by 83.68%, the number of egg masses by 83.85%, the number of adult females by 66.56%, and the number of second-stage juveniles by 73.20%. In a field experiment, application of chitosan nanospheres (1%) was followed by a 18.75% increase in fruit yield compared to the non-treated control.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230033"},"PeriodicalIF":1.4,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10229424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0026
Alexandra C Kessler, Alyssa M Koehler
Soybean Cyst Nematode (SCN), Heterodera glycines Ichinohe, is the most important pathogen of soybean in the Mid-Atlantic region. In recent decades, a decline in the effectiveness of genetic resistance has been observed and additional management approaches are needed. Seed treatments are of rising interest, but no local data on product response exists for the region. In 2020-2021, two experiments were conducted to observe the effects of chemical and biological seed treatment options. In one experiment, chemical seed treatments pydiflumetofen (Saltro®) and fluopyram (ILEVO®) were screened against nontreated plain seed for SCN suppression. In a second experiment, pydiflumetofen, fluopyram and four biological nematode-protectant seed treatments with a standard base insecticide and fungicide treatment were compared to nontreated plain seed and seed with only the standard base treatment to test product efficacy against SCN. Seed treatments increased the percent emergence over plain seed. Nematode reproductive factors and female counts from roots were collected, but did not statistically differ between seed treatments or plain seed. Yield differences were observed in one of the five trials, where pydiflumetofen + base seed treatment yielded the highest (p < 0.001) at 3813.1 kg/ha. Response from seed treatments varied, with no specific seed treatment consistently reducing SCN populations or increasing yield across trials. Seed treatments may have potential as an element of an integrated management approach for SCN.
{"title":"Seed Treatments for Management of Soybean Cyst Nematode, <i>Heterodera glycines</i>, in Mid-Atlantic Soybean Production.","authors":"Alexandra C Kessler, Alyssa M Koehler","doi":"10.2478/jofnem-2023-0026","DOIUrl":"10.2478/jofnem-2023-0026","url":null,"abstract":"<p><p>Soybean Cyst Nematode (SCN), <i>Heterodera glycines</i> Ichinohe, is the most important pathogen of soybean in the Mid-Atlantic region. In recent decades, a decline in the effectiveness of genetic resistance has been observed and additional management approaches are needed. Seed treatments are of rising interest, but no local data on product response exists for the region. In 2020-2021, two experiments were conducted to observe the effects of chemical and biological seed treatment options. In one experiment, chemical seed treatments pydiflumetofen (Saltro®) and fluopyram (ILEVO®) were screened against nontreated plain seed for SCN suppression. In a second experiment, pydiflumetofen, fluopyram and four biological nematode-protectant seed treatments with a standard base insecticide and fungicide treatment were compared to nontreated plain seed and seed with only the standard base treatment to test product efficacy against SCN. Seed treatments increased the percent emergence over plain seed. Nematode reproductive factors and female counts from roots were collected, but did not statistically differ between seed treatments or plain seed. Yield differences were observed in one of the five trials, where pydiflumetofen + base seed treatment yielded the highest (<i>p</i> < 0.001) at 3813.1 kg/ha. Response from seed treatments varied, with no specific seed treatment consistently reducing SCN populations or increasing yield across trials. Seed treatments may have potential as an element of an integrated management approach for SCN.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230026"},"PeriodicalIF":1.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0029
Aashaq Hussain Bhat, Ricardo A R Machado, Joaquín Abolafia, Tarique Hassan Askary, Vladimír Půža, Alba Nazaret Ruiz-Cuenca, Aasha Rana, Samy Sayed, Laila A Al-Shuraym
Three entomopathogenic nematode populations were isolated from agricultural fields in the Anantnag district of Jammu and Kashmir (India). Sequences of multiple gene regions and phenotypic features show that they are conspecific and represent a novel species. Molecular and morphological features provided evidence for placing the new species into the "Kushidai" clade. Within this clade, analysis of sequence data of the internal transcribed spacer (ITS) gene, the D2D3 region of the 28S rRNA gene, the mitochondrial cytochrome oxidase I (mtCOI) gene, and the mitochondrial 12S (mt12S) gene depicted the novel species as a distinctive entity closely related to Steinernema akhursti, S. kushidai, and S. populi. Phylogenetic analyses also show that the new species is a sister species to S. akhursti, and these two species are closely related to S. kushidai and S. populi. Additionally, the new species does not mate or produce fertile progeny with any of the closely related species, reinforcing its uniqueness from a biological species concept standpoint. The new species is further characterized by the third-stage infective juveniles with almost straight bodies (0.7-0.8 mm length), poorly developed stoma and pharynx, and conoid-elongate tail (49-66 µm) with hyaline posterior part. Adult females are characterized by short and conoid tails bearing a short mucron in the first generation and long conoid tails with thin mucron in the second generation. Adult males have ventrally curved spicules in both generations. Moreover, the first-generation male has rounded manubrium, fusiform gubernaculum, conoid and slightly ventrally curved tails with minute mucron, and the second generation has rhomboid manubrium anteriorly ventrad bent, and tails with long and robust mucron. The morphological, morphometrical, molecular, and phylogenetic analyses support the new species status of this nematode, which is hereby described as Steinernema anantnagense n. sp. The bacterial symbiont associated with S. anantnagense n. sp. represents a novel species, closely related to Xenorhabdus japonica. These findings shed light on the diversity of entomopathogenic nematodes and their symbiotic bacteria, providing valuable information for future studies in this field.
{"title":"Multigene Sequence-Based and Phenotypic Characterization Reveals the Occurrence of a Novel Entomopathogenic Nematode Species, <i>Steinernema anantnagense</i> n. sp.","authors":"Aashaq Hussain Bhat, Ricardo A R Machado, Joaquín Abolafia, Tarique Hassan Askary, Vladimír Půža, Alba Nazaret Ruiz-Cuenca, Aasha Rana, Samy Sayed, Laila A Al-Shuraym","doi":"10.2478/jofnem-2023-0029","DOIUrl":"10.2478/jofnem-2023-0029","url":null,"abstract":"<p><p>Three entomopathogenic nematode populations were isolated from agricultural fields in the Anantnag district of Jammu and Kashmir (India). Sequences of multiple gene regions and phenotypic features show that they are conspecific and represent a novel species. Molecular and morphological features provided evidence for placing the new species into the \"<i>Kushidai</i>\" clade. Within this clade, analysis of sequence data of the internal transcribed spacer (ITS) gene, the D2D3 region of the 28S rRNA gene, the mitochondrial cytochrome oxidase I (<i>mtCOI</i>) gene, and the mitochondrial 12S (<i>mt12S</i>) gene depicted the novel species as a distinctive entity closely related to <i>Steinernema akhursti</i>, <i>S. kushidai</i>, and <i>S. populi</i>. Phylogenetic analyses also show that the new species is a sister species to <i>S. akhursti</i>, and these two species are closely related to <i>S. kushidai</i> and <i>S. populi</i>. Additionally, the new species does not mate or produce fertile progeny with any of the closely related species, reinforcing its uniqueness from a biological species concept standpoint. The new species is further characterized by the third-stage infective juveniles with almost straight bodies (0.7-0.8 mm length), poorly developed stoma and pharynx, and conoid-elongate tail (49-66 µm) with hyaline posterior part. Adult females are characterized by short and conoid tails bearing a short mucron in the first generation and long conoid tails with thin mucron in the second generation. Adult males have ventrally curved spicules in both generations. Moreover, the first-generation male has rounded manubrium, fusiform gubernaculum, conoid and slightly ventrally curved tails with minute mucron, and the second generation has rhomboid manubrium anteriorly ventrad bent, and tails with long and robust mucron. The morphological, morphometrical, molecular, and phylogenetic analyses support the new species status of this nematode, which is hereby described as <i>Steinernema anantnagense</i> n. sp. The bacterial symbiont associated with <i>S. anantnagense</i> n. sp. represents a novel species, closely related to <i>Xenorhabdus japonica</i>. These findings shed light on the diversity of entomopathogenic nematodes and their symbiotic bacteria, providing valuable information for future studies in this field.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230029"},"PeriodicalIF":1.3,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10236988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-06eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0018
J Desaeger, J Coburn, J Freeman, Z Brym
The subtropical climate of Florida allows for a wide range of crops to be grown. With the classification of hemp (Cannabis sativa L., <0.3% delta-9-tetrahydrocannabinol) as an agricultural commodity, hemp has become a potential alternative crop in Florida. Hemp cultivars of different geographies (Europe, China, and North America), and uses (fiber, oil and CBD), were evaluated in three field experiments. The field experiments evaluated a total of 26 cultivars and were conducted for two consecutive seasons at three different locations (soil types) in North (sandy loam), Central (fine sand), and South Florida (gravelly loam). Nematode soil populations were measured at the end of each season. A diverse population of plant-parasitic nematodes was found, with reniform nematodes (RN, Rotylenchulus reniformis) the dominant species in North and South Florida (up to 27.5 nematodes/cc soil), and RKN (Meloidogne javanica) the main species in central Florida (up to 4.7 nematodes/cc soil). Other nematodes that were commonly found in south Florida (and to a lesser extent north Florida) were spiral (Helicotylenchus spp.), stunt (Tylenchorhynchus spp.) and ring nematodes (Criconemoids), while in central Florida, stubby root (Nanidorus minor) and sting nematodes (Belonolaimus longicaduatus) were found. No significant difference among hemp cultivars was noted at any of the locations. RKN were found in all three regions and soils, while RN were only found in North and South Florida. This is the first report on plant-parasitic nematodes associated with hemp in Florida fields. Natural nematode populations varied greatly, depending on where in Florida hemp was grown. Growers who wish to include hemp in their crop rotation need to be aware of potential pest pressure from nematodes. More research is needed to determine to what extent nematodes, especially RKN and RN, can reduce hemp growth and yield.
{"title":"Plant-Parasitic Nematodes Associated with <i>Cannabis sativa</i> in Florida.","authors":"J Desaeger, J Coburn, J Freeman, Z Brym","doi":"10.2478/jofnem-2023-0018","DOIUrl":"10.2478/jofnem-2023-0018","url":null,"abstract":"<p><p>The subtropical climate of Florida allows for a wide range of crops to be grown. With the classification of hemp (<i>Cannabis sativa</i> L., <0.3% delta-9-tetrahydrocannabinol) as an agricultural commodity, hemp has become a potential alternative crop in Florida. Hemp cultivars of different geographies (Europe, China, and North America), and uses (fiber, oil and CBD), were evaluated in three field experiments. The field experiments evaluated a total of 26 cultivars and were conducted for two consecutive seasons at three different locations (soil types) in North (sandy loam), Central (fine sand), and South Florida (gravelly loam). Nematode soil populations were measured at the end of each season. A diverse population of plant-parasitic nematodes was found, with reniform nematodes (RN, <i>Rotylenchulus reniformis</i>) the dominant species in North and South Florida (up to 27.5 nematodes/cc soil), and RKN (<i>Meloidogne javanica</i>) the main species in central Florida (up to 4.7 nematodes/cc soil). Other nematodes that were commonly found in south Florida (and to a lesser extent north Florida) were spiral (<i>Helicotylenchus</i> spp.), stunt (<i>Tylenchorhynchus</i> spp.) and ring nematodes (Criconemoids), while in central Florida, stubby root (<i>Nanidorus minor</i>) and sting nematodes (<i>Belonolaimus longicaduatus</i>) were found. No significant difference among hemp cultivars was noted at any of the locations. RKN were found in all three regions and soils, while RN were only found in North and South Florida. This is the first report on plant-parasitic nematodes associated with hemp in Florida fields. Natural nematode populations varied greatly, depending on where in Florida hemp was grown. Growers who wish to include hemp in their crop rotation need to be aware of potential pest pressure from nematodes. More research is needed to determine to what extent nematodes, especially RKN and RN, can reduce hemp growth and yield.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230018"},"PeriodicalIF":1.3,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10602744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-06eCollection Date: 2023-02-01DOI: 10.2478/jofnem-2023-0028
Zane J Grabau, Chang Liu, Pablo A Navia Gine
Belonolaimus longicaudatus (sting nematode) is an important pest in Florida potato production and is managed primarily by fumigation using 1,3-dichloropropene (1,3-D). Other effective nematicides are needed for more flexibility in managing this pest. The objective of this study was to evaluate fluensulfone, metam potassium, and mixtures of the two products, relative to 1,3-D and untreated control, for efficacy at managing sting nematode, and for non-target effects on free-living nematodes in potato. To test this objective, a small-plot field experiment was conducted in northeast Florida in 2020 and repeated in 2021. Metam potassium fumigation (390 kg a.i./treated ha)-with or without fluensulfone-managed sting nematode soil abundances but was phytotoxic to potato. Strategies that mitigate metam potassium phytotoxicity, such as reduced application rates, are needed before efficacy of metam potassium in this system can be determined. As a preplant soil spray, fluensulfone alone (403 g a.i./treated ha) did not manage sting nematode abundances and had an inconsistent effect on yield. Fumigation with 1,3-D (88.3 kg a.i./treated ha) was the only treatment that consistently managed sting nematode and increased potato yield. Nematicides did not consistently affect free-living nematodes.
长尾贝洛诺莱姆斯(蜇线虫)是佛罗里达州马铃薯生产中的一种重要害虫,主要通过使用1,3-二氯丙烯(1,3-D)熏蒸进行管理。还需要其他有效的杀线虫剂来提高管理这种害虫的灵活性。本研究的目的是评估与1,3-D和未经处理的对照相比,氟磺酸、甲铵钾和这两种产品的混合物在管理刺线虫方面的功效,以及对马铃薯中自由生活线虫的非靶向作用。为了验证这一目标,2020年在佛罗里达州东北部进行了一项小地块田间试验,并于2021年重复进行。变质钾熏蒸(390公斤a.i./处理公顷)-使用或不使用氟磺酸酮控制了蜇线虫土壤的丰度,但对马铃薯具有植物毒性。在确定元钾在该系统中的功效之前,需要减轻元钾植物毒性的策略,例如降低施用率。作为一种植物前期土壤喷雾,单独使用氟森砜(403克a.i./处理公顷)不能控制蜇线虫的丰度,对产量的影响也不一致。用1,3-D熏蒸(88.3 kg a.i./处理公顷)是唯一能持续控制蜇线虫并提高马铃薯产量的处理方法。线虫并没有持续影响自由生活的线虫。
{"title":"<i>Belonolaimus longicaudatus</i> management using metam potassium and fluensulfone in potato.","authors":"Zane J Grabau, Chang Liu, Pablo A Navia Gine","doi":"10.2478/jofnem-2023-0028","DOIUrl":"10.2478/jofnem-2023-0028","url":null,"abstract":"<p><p><i>Belonolaimus longicaudatus</i> (sting nematode) is an important pest in Florida potato production and is managed primarily by fumigation using 1,3-dichloropropene (1,3-D). Other effective nematicides are needed for more flexibility in managing this pest. The objective of this study was to evaluate fluensulfone, metam potassium, and mixtures of the two products, relative to 1,3-D and untreated control, for efficacy at managing sting nematode, and for non-target effects on free-living nematodes in potato. To test this objective, a small-plot field experiment was conducted in northeast Florida in 2020 and repeated in 2021. Metam potassium fumigation (390 kg a.i./treated ha)-with or without fluensulfone-managed sting nematode soil abundances but was phytotoxic to potato. Strategies that mitigate metam potassium phytotoxicity, such as reduced application rates, are needed before efficacy of metam potassium in this system can be determined. As a preplant soil spray, fluensulfone alone (403 g a.i./treated ha) did not manage sting nematode abundances and had an inconsistent effect on yield. Fumigation with 1,3-D (88.3 kg a.i./treated ha) was the only treatment that consistently managed sting nematode and increased potato yield. Nematicides did not consistently affect free-living nematodes.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230028"},"PeriodicalIF":1.4,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10602746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}