Jasper Van den Bos, Ibo Janssens, Morgane Vermeulen, Amber Dams, Hans De Reu, Stefanie Peeters, Carole Faghel, Yousra El Ouaamari, Inez Wens, Nathalie Cools
Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA+ Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF). Kinetics of BDNF expression and secretion were explored. Treg activation state was assessed by checking the expression of activation markers CD69, CD71, and CD137. Our findings show that only activated Tregs secrete BDNF post-genetic engineering, even though both activated and resting Tregs express BDNF intracellularly. Notably, the mTOR pathway and CD137 are implicated in the regulation of protein secretion in activated Tregs, indicating a complex interplay of signalling pathways. This study contributes to understanding the mechanisms governing protein expression and secretion in engineered Tregs, offering insights for optimizing cell-based therapies and advancing immune regulation strategies.
{"title":"The Efficiency of Brain-Derived Neurotrophic Factor Secretion by mRNA-Electroporated Regulatory T Cells Is Highly Impacted by Their Activation Status","authors":"Jasper Van den Bos, Ibo Janssens, Morgane Vermeulen, Amber Dams, Hans De Reu, Stefanie Peeters, Carole Faghel, Yousra El Ouaamari, Inez Wens, Nathalie Cools","doi":"10.1002/eji.202451005","DOIUrl":"10.1002/eji.202451005","url":null,"abstract":"<p>Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA<sup>+</sup> Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF). Kinetics of BDNF expression and secretion were explored. Treg activation state was assessed by checking the expression of activation markers CD69, CD71, and CD137. Our findings show that only activated Tregs secrete BDNF post-genetic engineering, even though both activated and resting Tregs express BDNF intracellularly. Notably, the mTOR pathway and CD137 are implicated in the regulation of protein secretion in activated Tregs, indicating a complex interplay of signalling pathways. This study contributes to understanding the mechanisms governing protein expression and secretion in engineered Tregs, offering insights for optimizing cell-based therapies and advancing immune regulation strategies.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongmei Tong, Yuqi He, Shambel Araya Haile, Zoe Lee, Lena H M Le, Jack Emery, Georgie Wray-McCan, Michelle Chonwerawong, Dana J Philpott, Paul J Hertzog, Pascal Schneider, Richard L Ferrero, Le Ying
Helicobacter infection is a key cause of gastric B cell mucosa-associated lymphoid tissue (MALT) lymphoma. This study examined the role of B cell-activating factor (BAFF), a major driver of B cell proliferation and many B cell disorders, in this malignancy using a model in which conditional knockout mice for NOD-like receptor family CARD domain-containing 5 (Nlrc5) are infected with Helicobacter felis. Gastric BAFF production was significantly increased in H. felis-infected Nlrc5mø-KO mice compared to wild-type. Blocking BAFF signalling, before or after the onset of Helicobacter-induced gastritis, significantly reduced MALT development, with fewer gastric B cell follicles and reduced gland hyperplasia. BAFF blockade also reshaped the immune cell landscape in the stomach, resulting in fewer CD4+ T cells, Tregs, macrophages and dendritic cells. Using a cell culture model, we identified the protein-coding BAFF transcripts that are upregulated in NLRC5-deficient macrophages stimulated with either H. felis or the NLRC5 agonist, lipopolysaccharide. Among the upregulated variants, TNFSF13B (BAFF)-206 acts as a transcription factor and is reported to enhance BAFF production in autoimmune diseases and cancer. Altogether, these findings implicate the NLRC5-BAFF signalling axis in Helicobacter-induced B cell MALT lymphoma, highlighting BAFF inhibition as a potential therapeutic approach.
{"title":"BAFF Blockade Attenuates B Cell MALT Formation in Conditional Nlrc5-Deficient Mice With Helicobacter felis Infection.","authors":"Dongmei Tong, Yuqi He, Shambel Araya Haile, Zoe Lee, Lena H M Le, Jack Emery, Georgie Wray-McCan, Michelle Chonwerawong, Dana J Philpott, Paul J Hertzog, Pascal Schneider, Richard L Ferrero, Le Ying","doi":"10.1002/eji.202451355","DOIUrl":"https://doi.org/10.1002/eji.202451355","url":null,"abstract":"<p><p>Helicobacter infection is a key cause of gastric B cell mucosa-associated lymphoid tissue (MALT) lymphoma. This study examined the role of B cell-activating factor (BAFF), a major driver of B cell proliferation and many B cell disorders, in this malignancy using a model in which conditional knockout mice for NOD-like receptor family CARD domain-containing 5 (Nlrc5) are infected with Helicobacter felis. Gastric BAFF production was significantly increased in H. felis-infected Nlrc5<sup>mø-KO</sup> mice compared to wild-type. Blocking BAFF signalling, before or after the onset of Helicobacter-induced gastritis, significantly reduced MALT development, with fewer gastric B cell follicles and reduced gland hyperplasia. BAFF blockade also reshaped the immune cell landscape in the stomach, resulting in fewer CD4<sup>+</sup> T cells, Tregs, macrophages and dendritic cells. Using a cell culture model, we identified the protein-coding BAFF transcripts that are upregulated in NLRC5-deficient macrophages stimulated with either H. felis or the NLRC5 agonist, lipopolysaccharide. Among the upregulated variants, TNFSF13B (BAFF)-206 acts as a transcription factor and is reported to enhance BAFF production in autoimmune diseases and cancer. Altogether, these findings implicate the NLRC5-BAFF signalling axis in Helicobacter-induced B cell MALT lymphoma, highlighting BAFF inhibition as a potential therapeutic approach.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451355"},"PeriodicalIF":4.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inga E. Rødahl, Martin A. Ivarsson, Liyen Loh, Jeff E. Mold, Magnus Westgren, Danielle Friberg, Jenny Mjösberg, Niklas K. Björkström, Nicole Marquardt, Douglas F. Nixon, Jakob Michaëlsson
The human fetal immune system starts to develop in the first trimester and likely plays a crucial role in fetal development and maternal-fetal tolerance. Innate lymphoid cells (ILCs) are the earliest lymphoid cells to arise in the human fetus. ILCs consist of natural killer (NK) cells, ILC1s, ILC2s, and ILC3s that all share a common lymphoid origin. Here, we studied fetal ILC subsets, mainly NK cells and ILC3s and their potential progenitors, across human fetal tissues. Our results show that fetal ILC subsets have distinct distribution, developmental kinetics, and gene expression profiles across human fetal tissues. Furthermore, we identify CD34+RORγt+Eomes− and CD34+RORγt+Eomes+ cells in the fetal intestine, indicating that tissue-specific ILC progenitors exist already during fetal development.
{"title":"Distinct Tissue-Dependent Composition and Gene Expression of Human Fetal Innate Lymphoid Cells","authors":"Inga E. Rødahl, Martin A. Ivarsson, Liyen Loh, Jeff E. Mold, Magnus Westgren, Danielle Friberg, Jenny Mjösberg, Niklas K. Björkström, Nicole Marquardt, Douglas F. Nixon, Jakob Michaëlsson","doi":"10.1002/eji.202451150","DOIUrl":"10.1002/eji.202451150","url":null,"abstract":"<p>The human fetal immune system starts to develop in the first trimester and likely plays a crucial role in fetal development and maternal-fetal tolerance. Innate lymphoid cells (ILCs) are the earliest lymphoid cells to arise in the human fetus. ILCs consist of natural killer (NK) cells, ILC1s, ILC2s, and ILC3s that all share a common lymphoid origin. Here, we studied fetal ILC subsets, mainly NK cells and ILC3s and their potential progenitors, across human fetal tissues. Our results show that fetal ILC subsets have distinct distribution, developmental kinetics, and gene expression profiles across human fetal tissues. Furthermore, we identify CD34<sup>+</sup>RORγt<sup>+</sup>Eomes<sup>−</sup> and CD34<sup>+</sup>RORγt<sup>+</sup>Eomes<sup>+</sup> cells in the fetal intestine, indicating that tissue-specific ILC progenitors exist already during fetal development.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}