Background: Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against Porphyromonas gingivalis using metabolome analysis.
Materials and methods: P. gingivalis were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides.
Results: The relative amounts of various glycogenic amino acids were significantly decreased when P. gingivalis was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of P. gingivalis and activities of the DPPs.
Conclusions: Curcumin suppresses the growth of P. gingivalis by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.
{"title":"Curcumin inhibits growth of <i>Porphyromonas gingivalis</i> by arrest of bacterial dipeptidyl peptidase activity.","authors":"Hiroki Murai, Masae Kuboniwa, Miho Kakiuchi, Reiko Matsumura, Yoshihiko Hirata, Atsuo Amano","doi":"10.1080/20002297.2024.2373040","DOIUrl":"10.1080/20002297.2024.2373040","url":null,"abstract":"<p><strong>Background: </strong>Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against <i>Porphyromonas gingivalis</i> using metabolome analysis.</p><p><strong>Materials and methods: </strong><i>P. gingivalis</i> were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides.</p><p><strong>Results: </strong>The relative amounts of various glycogenic amino acids were significantly decreased when <i>P. gingivalis</i> was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of <i>P. gingivalis</i> and activities of the DPPs.</p><p><strong>Conclusions: </strong>Curcumin suppresses the growth of <i>P. gingivalis</i> by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2373040"},"PeriodicalIF":3.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27eCollection Date: 2024-01-01DOI: 10.1080/20002297.2024.2372206
Melinda Rabekka Purba, Mardikacandra Manggala Putra, Benso Sulijaya, Adityo Widaryono, Valdy Hartono, Yoga Setiadharma, Aurelle Khadeeja Rizany, Fatimah Maria Tadjoedin, Marie Rossini Carmela T Lachica
Introduction: Oral hygiene instruction (OHI) is essential during periodontitis treatment. Various OHI approaches have been explored, including mobile apps.
Objective: To evaluate the mobile app-based OHI's effect on periodontitis management by analyzing clinical parameters and subgingival microbiota.
Methods: Forty-four periodontitis patients were randomly assigned into two groups. The test group (n = 22) received scaling and root planing (SRP), OHI, and mobile app-based OHI, whereas the control group (n = 22) received SRP and OHI. Full mouth plaque score (FMPS), bleeding on probing (BOP) and probing pocket depth at the sampling sites (site-PPD) were assessed at baseline, one- and three-month visits. The 16S rRNA next-generation sequencing (NGS) was used to analyze subgingival plaque samples.
Results: Significant reduction in FMPS, BOP, and site-PPD at one- and three-month visits compared to baseline (p < 0.001) with no significant differences across groups (p > 0.05). In test groups, intra-group analysis showed better improvement in BOP and site-PPD (p < 0.05) than control. The diversity and composition of subgingival microbiota did not differ between groups or timepoints (p > 0.05).
Conclusions: Mobile app-based OHI showed no superior effects on improving clinical parameters and subgingival microbiota compared to conventional OHI. Further investigation into its long-term impact on periodontitis treatment is needed.
简介口腔卫生指导(OHI)在牙周炎治疗过程中至关重要。人们探索了多种口腔卫生指导方法,包括手机应用:通过分析临床参数和龈下微生物群,评估基于手机应用的口腔卫生指导对牙周炎治疗的效果:方法:将 44 名牙周炎患者随机分为两组。试验组(n = 22)接受洗牙和根面平整(SRP)、OHI 和基于手机应用的 OHI,而对照组(n = 22)接受 SRP 和 OHI。在基线、一个月和三个月的回访中评估了全口牙菌斑评分(FMPS)、探诊出血量(BOP)和取样部位的探诊袋深度(site-PPD)。16S rRNA新一代测序(NGS)用于分析龈下斑块样本:结果:与基线相比,一个月和三个月访视时的 FMPS、BOP 和 site-PPD 均显著下降(p p > 0.05)。在测试组中,组内分析显示 BOP 和 site-PPD 有更好的改善(p p > 0.05):结论:与传统 OHI 相比,基于移动应用程序的 OHI 在改善临床参数和龈下微生物群方面没有优势。需要进一步研究其对牙周炎治疗的长期影响。
{"title":"Effect of mobile app-based oral hygiene instructions on clinical parameters, oral bacterial diversity, and composition of subgingival microbiota in periodontitis patients.","authors":"Melinda Rabekka Purba, Mardikacandra Manggala Putra, Benso Sulijaya, Adityo Widaryono, Valdy Hartono, Yoga Setiadharma, Aurelle Khadeeja Rizany, Fatimah Maria Tadjoedin, Marie Rossini Carmela T Lachica","doi":"10.1080/20002297.2024.2372206","DOIUrl":"10.1080/20002297.2024.2372206","url":null,"abstract":"<p><strong>Introduction: </strong>Oral hygiene instruction (OHI) is essential during periodontitis treatment. Various OHI approaches have been explored, including mobile apps.</p><p><strong>Objective: </strong>To evaluate the mobile app-based OHI's effect on periodontitis management by analyzing clinical parameters and subgingival microbiota.</p><p><strong>Methods: </strong>Forty-four periodontitis patients were randomly assigned into two groups. The test group (<i>n</i> = 22) received scaling and root planing (SRP), OHI, and mobile app-based OHI, whereas the control group (<i>n</i> = 22) received SRP and OHI. Full mouth plaque score (FMPS), bleeding on probing (BOP) and probing pocket depth at the sampling sites (site-PPD) were assessed at baseline, one- and three-month visits. The 16S rRNA next-generation sequencing (NGS) was used to analyze subgingival plaque samples.</p><p><strong>Results: </strong>Significant reduction in FMPS, BOP, and site-PPD at one- and three-month visits compared to baseline (<i>p</i> < 0.001) with no significant differences across groups (<i>p</i> > 0.05). In test groups, intra-group analysis showed better improvement in BOP and site-PPD (<i>p</i> < 0.05) than control. The diversity and composition of subgingival microbiota did not differ between groups or timepoints (<i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>Mobile app-based OHI showed no superior effects on improving clinical parameters and subgingival microbiota compared to conventional OHI. Further investigation into its long-term impact on periodontitis treatment is needed.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2372206"},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diversity and delicate balance of the oral microbiome contribute to oral health, with its disruption leading to oral and systemic diseases. Toothpaste includes elements like traditional additives such as sodium lauryl sulfate (SLS) as well as novel postbiotics derived from probiotics, which are commonly employed for maintaining oral hygiene and a healthy oral cavity. However, the response of the oral microbiota to these treatments remains poorly understood. In this study, we systematically investigated the impact of SLS, and toothpaste containing postbiotics (hereafter, postbiotic toothpaste) across three systems: biofilms, animal models, and clinical populations. SLS was found to kill bacteria in both preformed biofilms (mature biofilms) and developing biofilms (immature biofilms), and disturbed the microbial community structure by increasing the number of pathogenic bacteria. SLS also destroyed periodontal tissue, promoted alveolar bone resorption, and enhanced the extent of inflammatory response level. The postbiotic toothpaste favored bacterial homeostasis and the normal development of the two types of biofilms in vitro, and attenuated periodontitis and gingivitis in vivo via modulation of oral microecology. Importantly, the postbiotic toothpaste mitigated the adverse effects of SLS when used in combination, both in vitro and in vivo. Overall, the findings of this study describe the impact of toothpaste components on oral microflora and stress the necessity for obtaining a comprehensive understanding of oral microbial ecology by considering multiple aspects.
{"title":"Effects of sodium lauryl sulfate and postbiotic toothpaste on oral microecology.","authors":"Qingying Shi, Lianlian Sun, Jing Gao, Fengzhu Li, Dongxiao Chen, Tingting Shi, Youlan Tan, Huimin Chang, Xiaozhi Liu, Jian Kang, Fuping Lu, Zhengmei Huang, Huabing Zhao","doi":"10.1080/20002297.2024.2372224","DOIUrl":"https://doi.org/10.1080/20002297.2024.2372224","url":null,"abstract":"<p><p>The diversity and delicate balance of the oral microbiome contribute to oral health, with its disruption leading to oral and systemic diseases. Toothpaste includes elements like traditional additives such as sodium lauryl sulfate (SLS) as well as novel postbiotics derived from probiotics, which are commonly employed for maintaining oral hygiene and a healthy oral cavity. However, the response of the oral microbiota to these treatments remains poorly understood. In this study, we systematically investigated the impact of SLS, and toothpaste containing postbiotics (hereafter, postbiotic toothpaste) across three systems: biofilms, animal models, and clinical populations. SLS was found to kill bacteria in both preformed biofilms (mature biofilms) and developing biofilms (immature biofilms), and disturbed the microbial community structure by increasing the number of pathogenic bacteria. SLS also destroyed periodontal tissue, promoted alveolar bone resorption, and enhanced the extent of inflammatory response level. The postbiotic toothpaste favored bacterial homeostasis and the normal development of the two types of biofilms <i>in vitro</i>, and attenuated periodontitis and gingivitis <i>in vivo</i> via modulation of oral microecology. Importantly, the postbiotic toothpaste mitigated the adverse effects of SLS when used in combination, both <i>in vitro</i> and <i>in vivo</i>. Overall, the findings of this study describe the impact of toothpaste components on oral microflora and stress the necessity for obtaining a comprehensive understanding of oral microbial ecology by considering multiple aspects.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2372224"},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24eCollection Date: 2024-01-01DOI: 10.1080/20002297.2024.2369350
Davis R Zakis, Bernd W Brandt, Suzette V van der Waal, Bart J F Keijser, Wim Crielaard, Derek W K van der Plas, Catherine M C Volgenant, Egija Zaura
Introduction: The aim of the study was to evaluate the modulating effects of five commonly used sweetener (glucose, inulin, isomaltulose, tagatose, trehalose) containing mouth rinses on the oral microbiome.
Methods: A single-centre, double-blind, parallel randomized clinical trial was performed with healthy, 18-55-year-old volunteers (N = 65), who rinsed thrice-daily for two weeks with a 10% solution of one of the allocated sweeteners. Microbiota composition of supragingival dental plaque and the tongue dorsum coating was analysed by 16S RNA gene amplicon sequencing of the V4 hypervariable region (Illumina MiSeq). As secondary outcomes, dental plaque red fluorescence and salivary pH were measured.
Results: Dental plaque microbiota changed significantly for two groups: inulin (F = 2.0239, p = 0.0006 PERMANOVA, Aitchison distance) and isomaltulose (F = 0.67, p = 0.0305). For the tongue microbiota, significant changes were observed for isomaltulose (F = 0.8382, p = 0.0452) and trehalose (F = 1.0119, p = 0.0098). In plaque, 13 species changed significantly for the inulin group, while for tongue coating, three species changed for the trehalose group (ALDEx2, p < 0.1). No significant changes were observed for the secondary outcomes.
Conclusion: The effects on the oral microbiota were sweetener dependant with the most pronounced effect on plaque microbiota. Inulin exhibited the strongest microbial modulating potential of the sweeteners tested. Further full-scale clinical studies are required.
{"title":"The effect of different sweeteners on the oral microbiome: a randomized clinical exploratory pilot study.","authors":"Davis R Zakis, Bernd W Brandt, Suzette V van der Waal, Bart J F Keijser, Wim Crielaard, Derek W K van der Plas, Catherine M C Volgenant, Egija Zaura","doi":"10.1080/20002297.2024.2369350","DOIUrl":"10.1080/20002297.2024.2369350","url":null,"abstract":"<p><strong>Introduction: </strong>The aim of the study was to evaluate the modulating effects of five commonly used sweetener (glucose, inulin, isomaltulose, tagatose, trehalose) containing mouth rinses on the oral microbiome.</p><p><strong>Methods: </strong>A single-centre, double-blind, parallel randomized clinical trial was performed with healthy, 18-55-year-old volunteers (N = 65), who rinsed thrice-daily for two weeks with a 10% solution of one of the allocated sweeteners. Microbiota composition of supragingival dental plaque and the tongue dorsum coating was analysed by 16S RNA gene amplicon sequencing of the V4 hypervariable region (Illumina MiSeq). As secondary outcomes, dental plaque red fluorescence and salivary pH were measured.</p><p><strong>Results: </strong>Dental plaque microbiota changed significantly for two groups: inulin (F = 2.0239, p = 0.0006 PERMANOVA, Aitchison distance) and isomaltulose (F = 0.67, p = 0.0305). For the tongue microbiota, significant changes were observed for isomaltulose (F = 0.8382, p = 0.0452) and trehalose (F = 1.0119, p = 0.0098). In plaque, 13 species changed significantly for the inulin group, while for tongue coating, three species changed for the trehalose group (ALDEx2, p < 0.1). No significant changes were observed for the secondary outcomes.</p><p><strong>Conclusion: </strong>The effects on the oral microbiota were sweetener dependant with the most pronounced effect on plaque microbiota. Inulin exhibited the strongest microbial modulating potential of the sweeteners tested. Further full-scale clinical studies are required.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2369350"},"PeriodicalIF":3.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11198155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Healthcare settings may amplify transmission of respiratory pathogens, however empirical evidence is lacking. We aimed to describe the spectrum and distribution of respiratory pathogens among healthcare workers in eastern China.
Methods: Healthcare workers were recruited from October 2020 to November 2021 in Jiangsu province. Participants were interviewed regarding demographic and hospital-based protective measures. Thirty-seven common respiratory pathogens were tested using real-time PCR/RT-PCR (Probe qPCR). The role of demographic and hospital-based protective measures on pathogens colonization using multivariable logistic regression models.
Results: Among 316 enrolled healthcare workers, a total of 21 pathogens were detected. In total, 212 (67.1%) healthcare workers had at least one respiratory pathogen; 195 (61.7%) and 70 (22.2%) with a bacterial and viral pathogen. The most commonly detected pathogen was streptococcus pneumoniae (47.5%) followed by Haemophilus influenzae (21.2%). One hundred and five (33.2%) healthcare workers with copathogens had at least two respiratory pathogens. Both bacterial and viral colonization were more common in 2020 compared to 2021. A decreased risk of colonization was seen in participants with infection prevention and control training and suitable hand hygiene.
Conclusions: Colonization of respiratory pathogens in healthcare workers from eastern China was high. Differential risk was impacted only by hospital-based protective measures and not demographic factors.
{"title":"Colonization of bacterial and viral respiratory pathogens among healthcare workers in China during COVID-19 pandemic.","authors":"Dandan Yang, Jianan Xu, Tao Wu, Wei Zhang, Xiaojun Zhu, Zhengdong Zhang, Baoli Zhu","doi":"10.1080/20002297.2024.2365965","DOIUrl":"10.1080/20002297.2024.2365965","url":null,"abstract":"<p><strong>Background: </strong>Healthcare settings may amplify transmission of respiratory pathogens, however empirical evidence is lacking. We aimed to describe the spectrum and distribution of respiratory pathogens among healthcare workers in eastern China.</p><p><strong>Methods: </strong>Healthcare workers were recruited from October 2020 to November 2021 in Jiangsu province. Participants were interviewed regarding demographic and hospital-based protective measures. Thirty-seven common respiratory pathogens were tested using real-time PCR/RT-PCR (Probe qPCR). The role of demographic and hospital-based protective measures on pathogens colonization using multivariable logistic regression models.</p><p><strong>Results: </strong>Among 316 enrolled healthcare workers, a total of 21 pathogens were detected. In total, 212 (67.1%) healthcare workers had at least one respiratory pathogen; 195 (61.7%) and 70 (22.2%) with a bacterial and viral pathogen. The most commonly detected pathogen was streptococcus pneumoniae (47.5%) followed by <i>Haemophilus</i> influenzae (21.2%). One hundred and five (33.2%) healthcare workers with copathogens had at least two respiratory pathogens. Both bacterial and viral colonization were more common in 2020 compared to 2021. A decreased risk of colonization was seen in participants with infection prevention and control training and suitable hand hygiene.</p><p><strong>Conclusions: </strong>Colonization of respiratory pathogens in healthcare workers from eastern China was high. Differential risk was impacted only by hospital-based protective measures and not demographic factors.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2365965"},"PeriodicalIF":3.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Erythrosine+potassium iodide-mediated photodynamic therapy has shown an anticandidal effect. Single session, however, has inadequate fungal inhibition.
Objectives: We aimed to examine the effects of multiple aPDT sessions on Candida albicans inhibition and singlet oxygen formation.
Methods: 220 μM erythrosine +/-100 mM potassium iodide was applied to C. albicans biofilms for 1 min prior to irradiation at 530±10 nm using a 250 mW/cm2 light-emitting diode. Negative and positive controls were phosphate buffer saline and nystatin, respectively. Single, double and triple irradiation sessions with a 5 min resting time between sessions were performed. Post-treatment candidal counts were done at 0, 1 6 and 24 hr while log10 colony forming unit/ml was calculated and compared using a Kruskal-Wallis with Dunn's post hoc test at a p<0.05 - Singlet oxygen amount was compared using one-way ANOVA with a post hoc test at a p< 0.05.
Results: Two and three irradiation sessions to erythrosine+potassium iodide could inhibit Candida albicans at 7.92 log10CFU/ml (p < 0.001) . Singlet oxygen from a combination groups was significantly higher than for erythrosine (positive control). Moreover, the correlation coefficient (r) between singlet oxygen production and decreased Candida albicans counts was equal to 1.
Conclusion: Multiple sessions PDT of 220 μM erythrosine+100 mM potassium iodide effectively inhibited a Candida biofilm.
背景:赤藓红+碘化钾介导的光动力疗法具有抗念珠菌作用。然而,单次治疗对真菌的抑制作用不足:方法:在使用 250 mW/cm2 发光二极管照射 530±10 纳米波长之前,将 220 μM 赤藓红 +/-100 mM 碘化钾涂抹在白念珠菌生物膜上 1 分钟。阴性和阳性对照分别为磷酸盐缓冲液和奈司他丁。进行单次、两次和三次照射,两次照射之间休息 5 分钟。处理后的念珠菌计数分别在 0、1 6 和 24 小时进行,同时计算 log10 菌落形成单位/毫升,并使用 Kruskal-Wallis 和 Dunn's post hoc 检验比较 ppResults:红霉素+碘化钾照射两次和三次可抑制白色念珠菌7.92 log10CFU/ml(p白色念珠菌计数等于1):220 μM 赤藓红+100 mM 碘化钾的多次光动力疗法可有效抑制白色念珠菌生物膜。
{"title":"Anticandidal effect of multiple sessions of erythrosine and potassium iodide-mediated photodynamic therapy.","authors":"Pran Pitaksanurat, Nirawat Mayeah, Pattranun Saithong, Surachai Pimha, Prapatsara Sirikarn, Teerasak Damrongrungruang","doi":"10.1080/20002297.2024.2369357","DOIUrl":"10.1080/20002297.2024.2369357","url":null,"abstract":"<p><strong>Background: </strong>Erythrosine+potassium iodide-mediated photodynamic therapy has shown an anticandidal effect. Single session, however, has inadequate fungal inhibition.</p><p><strong>Objectives: </strong>We aimed to examine the effects of multiple aPDT sessions on <i>Candida albicans</i> inhibition and singlet oxygen formation.</p><p><strong>Methods: </strong>220 μM erythrosine +/-100 mM potassium iodide was applied to <i>C. albicans</i> biofilms for 1 min prior to irradiation at 530±10 nm using a 250 mW/cm<sup>2</sup> light-emitting diode. Negative and positive controls were phosphate buffer saline and nystatin, respectively. Single, double and triple irradiation sessions with a 5 min resting time between sessions were performed. Post-treatment candidal counts were done at 0, 1 6 and 24 hr while log<sub>10</sub> colony forming unit/ml was calculated and compared using a Kruskal-Wallis with Dunn's post hoc test at a <i>p</i><0.05 - Singlet oxygen amount was compared using one-way ANOVA with a post hoc test at a <i>p</i>< 0.05.</p><p><strong>Results: </strong>Two and three irradiation sessions to erythrosine+potassium iodide could inhibit <i>Candida albicans</i> at 7.92 log<sub>10</sub>CFU/ml (<i>p</i> < 0.001) . Singlet oxygen from a combination groups was significantly higher than for erythrosine (positive control). Moreover, the correlation coefficient (r) between singlet oxygen production and decreased <i>Candida albicans</i> counts was equal to 1.</p><p><strong>Conclusion: </strong>Multiple sessions PDT of 220 μM erythrosine+100 mM potassium iodide effectively inhibited a <i>Candida</i> biofilm.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2369357"},"PeriodicalIF":3.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Gingivitis is a prevalent complication in adolescents undergoing fixed orthodontic treatments. However, changes in the supragingival microbiome associated with gingivitis and the impact of Candida albicans remain elusive. Therefore, we investigated supragingival microbiome discrepancy and C. albicans colonization in adolescent orthodontic patients with gingivitis.
Methods: Dental plaques were collected from 30 gingivitis patients and 24 healthy adolescents, all undergoing fixed orthodontic treatment. The supragingival microbiome composition was analyzed using 16S rRNA sequencing. C. albicans colonization was determined using fungal culture and real-time quantitative polymerase chain reaction.
Results: Our analysis revealed significantly heightened microbial diversity in the Gingivitis group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, such as Saccharibacteria (TM7) [G-1], Selenomonas, Actinomyces dentalis, and Selenomonas sputigena. Additionally, 33% of the gingivitis patients tested positive for C. albicans, exhibiting significantly elevated levels of absolute abundance, while all healthy patients tested negative. Significant differences in microbial composition were also noted between C. albicans-positive and -negative samples in the Gingivitis group.
Conclusion: Significant disparities were observed in the supragingival microbiome of adolescent orthodontic patients with and without gingivitis. The presence of C. albicans in the supragingival plaque may alter the microbiome composition and potentially contribute to gingivitis pathogenesis.
{"title":"Supragingival microbiome variations and the influence of <i>Candida albicans</i> in adolescent orthodontic patients with gingivitis.","authors":"Hao Yang, Yansong Ma, Hongyu Gao, Xianju Xie, Hongmei Wang, Xiaowei Li, Yuxing Bai","doi":"10.1080/20002297.2024.2366056","DOIUrl":"10.1080/20002297.2024.2366056","url":null,"abstract":"<p><strong>Introduction: </strong>Gingivitis is a prevalent complication in adolescents undergoing fixed orthodontic treatments. However, changes in the supragingival microbiome associated with gingivitis and the impact of <i>Candida albicans</i> remain elusive. Therefore, we investigated supragingival microbiome discrepancy and <i>C. albicans</i> colonization in adolescent orthodontic patients with gingivitis.</p><p><strong>Methods: </strong>Dental plaques were collected from 30 gingivitis patients and 24 healthy adolescents, all undergoing fixed orthodontic treatment. The supragingival microbiome composition was analyzed using 16S rRNA sequencing. <i>C. albicans</i> colonization was determined using fungal culture and real-time quantitative polymerase chain reaction.</p><p><strong>Results: </strong>Our analysis revealed significantly heightened microbial diversity in the Gingivitis group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, such as <i>Saccharibacteria (TM7) [G-1]</i>, <i>Selenomonas</i>, <i>Actinomyces dentalis</i>, and <i>Selenomonas sputigena</i>. Additionally, 33% of the gingivitis patients tested positive for <i>C. albicans</i>, exhibiting significantly elevated levels of absolute abundance, while all healthy patients tested negative. Significant differences in microbial composition were also noted between <i>C. albicans</i>-positive and -negative samples in the Gingivitis group.</p><p><strong>Conclusion: </strong>Significant disparities were observed in the supragingival microbiome of adolescent orthodontic patients with and without gingivitis. The presence of <i>C. albicans</i> in the supragingival plaque may alter the microbiome composition and potentially contribute to gingivitis pathogenesis.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2366056"},"PeriodicalIF":4.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This study aimed to investigate the effect of honokiol combined with resveratrol on bacteria responsible for oral malodor and their biofilm.
Method: This study investigated drug's MIC, FICI and dynamic bactericidal susceptibility activities against Pg and Fn. The effects of drugs on biofilm metabolic activity, biofilm total amount, and biofilm microstructure were determined by CCK-8 experiment, semi-quantitative adhesion experiment and SEM, respectively. The effects of drugs on biofilm genes, extracellular polysaccharides, proteins and DNA content were determined by qRT-PCR, phenol-sulfuric acid method, BCA method and Nano Drop one C, respectively.
Results: The combination had synergistic antibacterial effect on Pg and Fn. 1/2×MIC and 1×MIC combination inhibit the whole process of Pg and Fn growth. The results showed that the combination effectively reduce biofilm metabolic activity and total amount, and destroy biofilm microstructure. The results showed that the combination downregulate the gene expression both Pg and Fn, reduce extracellular polysaccharides and DNA of Pg, and reduce extracellular proteins and DNA of Fn.
Conclusion: This study showed that the combination had a synergistic antibacterial effect on Pg and Fn, reduced the biofilm extracellular matrix, inhibited biofilm formation, and downregulated the expression of genes related to biofilm formation.
{"title":"Effects of honokiol combined with resveratrol on bacteria responsible for oral malodor and their biofilm.","authors":"Shiqian Zheng, Rongrong Deng, Gengjiu Huang, Zhiwen Ou, Zhibin Shen","doi":"10.1080/20002297.2024.2361402","DOIUrl":"10.1080/20002297.2024.2361402","url":null,"abstract":"<p><strong>Background: </strong>This study aimed to investigate the effect of honokiol combined with resveratrol on bacteria responsible for oral malodor and their biofilm.</p><p><strong>Method: </strong>This study investigated drug's MIC, FICI and dynamic bactericidal susceptibility activities against Pg and Fn. The effects of drugs on biofilm metabolic activity, biofilm total amount, and biofilm microstructure were determined by CCK-8 experiment, semi-quantitative adhesion experiment and SEM, respectively. The effects of drugs on biofilm genes, extracellular polysaccharides, proteins and DNA content were determined by qRT-PCR, phenol-sulfuric acid method, BCA method and Nano Drop one C, respectively.</p><p><strong>Results: </strong>The combination had synergistic antibacterial effect on Pg and Fn. 1/2×MIC and 1×MIC combination inhibit the whole process of Pg and Fn growth. The results showed that the combination effectively reduce biofilm metabolic activity and total amount, and destroy biofilm microstructure. The results showed that the combination downregulate the gene expression both Pg and Fn, reduce extracellular polysaccharides and DNA of Pg, and reduce extracellular proteins and DNA of Fn.</p><p><strong>Conclusion: </strong>This study showed that the combination had a synergistic antibacterial effect on Pg and Fn, reduced the biofilm extracellular matrix, inhibited biofilm formation, and downregulated the expression of genes related to biofilm formation.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2361402"},"PeriodicalIF":4.5,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05eCollection Date: 2024-01-01DOI: 10.1080/20002297.2024.2361403
Lixin Fang, Yishuang Zhang, Long Cheng, Hao Zheng, Yiyi Wang, Lu Qin, Yingchun Cai, Lei Cheng, Wen Zhou, Fei Liu, Suping Wang
Objectives: This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm.
Methods: Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis).
Results: nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h.
Conclusions: nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.
{"title":"Silica nanoparticles containing nano-silver and chlorhexidine to suppress <i>Porphyromonas gingivalis</i> biofilm and modulate multispecies biofilms toward healthy tendency.","authors":"Lixin Fang, Yishuang Zhang, Long Cheng, Hao Zheng, Yiyi Wang, Lu Qin, Yingchun Cai, Lei Cheng, Wen Zhou, Fei Liu, Suping Wang","doi":"10.1080/20002297.2024.2361403","DOIUrl":"10.1080/20002297.2024.2361403","url":null,"abstract":"<p><strong>Objectives: </strong>This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on <i>Porphyromonas gingivalis</i> (<i>P. gingivalis</i>) biofilm; (2) the suppressing effect on virulence of <i>P. gingivalis</i> biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm.</p><p><strong>Methods: </strong>Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against <i>P. gingivalis</i> were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (<i>P. gingivalis</i>, <i>Streptococcus gordonii</i> and <i>Streptococcus sanguinis</i>).</p><p><strong>Results: </strong>nMS-nAg-Chx inhibited <i>P. gingivalis</i> biofilm dose-dependently (<i>p</i><0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (<i>p</i><0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h.</p><p><strong>Conclusions: </strong>nMS-nAg-Chx inhibited <i>P. gingivalis</i> growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2361403"},"PeriodicalIF":4.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03eCollection Date: 2024-01-01DOI: 10.1080/20002297.2024.2362313
Shihong Luo, Fangzhi Lou, Li Yan, Yunmei Dong, Yingying Zhang, Yang Liu, Ping Ji, Xin Jin
Background: Burning mouth syndrome (BMS) is a chronic idiopathic facial pain with intraoral burning or dysesthesia. BMS patients regularly suffer from anxiety/depression, and the association of psychiatric symptoms with BMS has received considerable attention in recent years. The aims of this study were to investigate the potential interplay between psychiatric symptoms and BMS.
Methods: Using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS) to evaluate the oral microbiota and saliva metabolism of 40 BMS patients [including 29 BMS patients with depression or anxiety symptoms (DBMS)] and 40 age matched healthy control (HC).
Results: The oral microbiota composition in BMS exhibited no significant differences from HC, although DBMS manifested decreased α-diversity relative to HC. Noteworthy was the discernible elevation in the abundance of proinflammatory microorganisms within the oral microbiome of individuals with DBMS. Parallel findings in LC/MS analyses revealed discernible disparities in metabolites between DBMS and HC groups. Principal differential metabolites were notably enriched in amino acid metabolism and lipid metabolism, exhibiting associations with infectious and immunological diseases. Furthermore, the integrated analysis underscores a definitive association between the oral microbiome and metabolism in DBMS.
Conclusions: This study suggests possible future modalities for better understanding the pathogenesis and personalized treatment plans of BMS.
{"title":"Comprehensive analysis of the oral microbiota and metabolome change in patients of burning mouth syndrome with psychiatric symptoms.","authors":"Shihong Luo, Fangzhi Lou, Li Yan, Yunmei Dong, Yingying Zhang, Yang Liu, Ping Ji, Xin Jin","doi":"10.1080/20002297.2024.2362313","DOIUrl":"10.1080/20002297.2024.2362313","url":null,"abstract":"<p><strong>Background: </strong>Burning mouth syndrome (BMS) is a chronic idiopathic facial pain with intraoral burning or dysesthesia. BMS patients regularly suffer from anxiety/depression, and the association of psychiatric symptoms with BMS has received considerable attention in recent years. The aims of this study were to investigate the potential interplay between psychiatric symptoms and BMS.</p><p><strong>Methods: </strong>Using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS) to evaluate the oral microbiota and saliva metabolism of 40 BMS patients [including 29 BMS patients with depression or anxiety symptoms (DBMS)] and 40 age matched healthy control (HC).</p><p><strong>Results: </strong>The oral microbiota composition in BMS exhibited no significant differences from HC, although DBMS manifested decreased α-diversity relative to HC. Noteworthy was the discernible elevation in the abundance of proinflammatory microorganisms within the oral microbiome of individuals with DBMS. Parallel findings in LC/MS analyses revealed discernible disparities in metabolites between DBMS and HC groups. Principal differential metabolites were notably enriched in amino acid metabolism and lipid metabolism, exhibiting associations with infectious and immunological diseases. Furthermore, the integrated analysis underscores a definitive association between the oral microbiome and metabolism in DBMS.</p><p><strong>Conclusions: </strong>This study suggests possible future modalities for better understanding the pathogenesis and personalized treatment plans of BMS.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2362313"},"PeriodicalIF":4.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}