Background: Despite poor oral hygiene, the Baiku Yao (BKY) ethnic group in China presents a low prevalence of dental caries, which may be related to genetic susceptibility. Due to strict intra-ethnic marriage rule, this ethnic has an advantage in studying the interaction between genetic factors and other regulatory factors related to dental caries.
Methods: Peripheral blood from a caries-free adult male was used for whole genome sequencing, and the BKY assembled genome was compared to the Han Chinese genome. Oral saliva samples were collected from 51 subjects for metabolomic and metagenomic analysis. Multiomics data were integrated for combined analysis using bioinformatics approaches.
Results: Comparative genomic analysis revealed the presence of structural variations in several genes associated with dental caries. Metabolomic and metagenomic sequencing demonstrated the caries-free group had significantly higher concentration of antimicrobials and higher abundance of core oral health-related microbiota. The functional analysis indicated that cationic antimicrobial peptide resistance and the lipopolysaccharide biosynthesis pathway were enriched in the caries-free group.
Conclusions: Our study provided new insights into the specific regulatory mechanisms that contribute to the low prevalence of dental caries in the specific population and may provide new evidence for the genetic diagnosis and control of dental caries.
Background: Poor oral hygiene and the increased incidence and severity of periodontitis may exacerbate SARS-CoV-2 infection. The aim was to evaluate the oral microbiota of 60 participants divided into groups: COVID-19 convalescents who received antibiotics during hospitalization (I), COVID-19 convalescents without antibiotic therapy (II) and healthy individuals (III).
Materials and methods: Dental examination was conducted, and oral health status was evaluated using selected dental indexes. Clinical samples (saliva, dorsal swabs, supragingival and subgingival plaque) were collected and used for metagenomic library to the next-generation sequencing (NGS) preparation.
Results: Each of the clinical materials in particular groups of patients showed a statistically significant and quantitatively different bacterial composition. Patients from group I showed significantly worse oral health, reflected by higher average values of dental indexes and also a higher percentage of Veillonella, Tannerella, Capnocytophaga and Selenomonas genera in comparison to other groups. Additionally, a statistically significant decrease in the amount of Akkermansia type in both groups with COVID-19 was observed for all materials.
Conclusions: The primary factor affecting the composition of oral microbiota was not the SARS-CoV-2 infection itself, but the use of antibiotic therapy. The increased percentage of pro-inflammatory pathogens observed in COVID-19 patients underscores the importance of preventing periodontal disease and improving oral hygiene in the future.
Background: Stroke, a leading cause of disability worldwide, has been associated with periodontitis. However, whether stroke risk is related to oral microbiota remains unknown. This study aims to evaluate the associations between the oral microbiome and ischemic stroke risk.
Methods: In a case-control study of 134 case-control pairs nested within a prospective cohort study, we examined pre-diagnostic oral microbiome in association with stroke risk via shotgun metagenomic sequencing. The microbial sub-community and functional profiling were performed using Latent Dirichlet Allocation and HUMAnN2. Associations of microbial diversity, sub-community structure, and individual microbial features with ischemic stroke risk were evaluated via conditional logistic regression.
Results: Alpha and beta diversities differ significantly between cases and controls. One genus- and two species-level sub-communities were significantly associated with decreased ischemic stroke risk, with odds ratios (95% confidence intervals) of 0.52 (0.31-0.90), 0.51 (0.31-0.84), and 0.60 (0.36-0.99), respectively. These associations were potentially driven by the representative taxa in these sub-communities, i.e., genus Corynebacterium and Lautropia, and species Lautropia mirabilis and Neisseria elongate (p < 0.05). Additionally, 55 taxa, 1,237 gene families, and 90 metabolic pathways were associated with ischemic stroke risk at p < 0.05.
Conclusion: Our study highlights the role of oral microbiota in the etiology of ischemic stroke and calls for further research.
Acute pancreatitis (AP) is a common abdomen clinical emergency. Most APs have mild clinical symptoms and a good prognosis. However, about 20% of patients develop severe acute pancreatitis (SAP), increasing morbidity and mortality. The microbiome's impact on AP pathophysiology has received increasing attention. Hence, to explore changes in oral microbial composition in acute pancreatitis, we collected clinical information and oral saliva samples from 136 adult participants: 47 healthy controls, 43 acute mild AP (MAP), 29 moderate AP (MSAP), and 17 severe AP (SAP). Using 16S rRNA gene sequencing, 663,175 high-quality sequences were identified. The relative abundance and diversity of oral microorganisms in AP patients increased, with decreased beneficial bacteria such as Streptococcus, Neisseria, and Gemella, and increased Prevotella, Veillonella, Granulicatella, Actinomyces, and Peptostreptococcus in the AP group. Further changes in microbial composition occurred with increasing disease severity, including a decreased abundance of beneficial bacteria such as Neisseria, Haemophilus, and Gemella in MSAP and SAP compared to MAP. Moreover, the Lefse analysis showed that Prevotella, Peptostreptococcus, Actinomyces, and Porphyromonas were better microbial markers for AP. Therefore, oral microbiome changes could distinguish AP from healthy individuals and serve as an early novel predictor of disease severity in AP patients.
We investigated bacterial colonisation patterns of healthy mucosa (buccal, tongue, palate and floor of mouth) in a cohort of adults in order to determine how smoking, tooth loss, plaque levels and oral hygiene practices impacted on mucosal colonisation. A total of 322 swabs were recovered from 256 participants, of whom 46% were current smokers. We analysed colonization by sequencing the V1-V3 regions of the 16S rRNA gene. Palate and tongue microbiomes generally exhibited greater biodiversity than buccal and floor of mouth. Although Neisseria, Lautropia and Haemophilus spp. showed reduced abundance in smokers, buccal mucosa specifically showed a significant increase in Prevotella spp., whereas tongue and floor of mouth tended towards increased abundance of Streptococcus spp. Unexpectedly, tooth brushing frequency had a greater impact on mucosal community structure than plaque levels. Tooth loss was associated with significant reductions in mucosal biodiversity and had site-specific impacts, with buccal communities showing increased abundance of periodontitis-associated species and Rothia mucilaginosa, whereas tongue communities exhibited increased abundance of several streptococcal OTUs and reduced abundance of Haemophilus spp. This study highlights the complex relationship between mucosal colonisation and host factors, highlighting the need for careful consideration of these factors in mucosal microbiome studies.
Gemella species are core members of the human oral microbiome in healthy subjects and are regarded as commensals, although they can cause opportunistic infections. Our objective was to evaluate the site-specialization of Gemella species among various habitats within the mouth by combining pangenomics and metagenomics. With pangenomics, we identified genome relationships and categorized genes as core and accessory to each species. With metagenomics, we identified the primary oral habitat of individual genomes. Our results establish that the genomes of three species, G. haemolysans, G. sanguinis and G. morbillorum, are abundant and prevalent in human mouths at different oral sites: G. haemolysans on buccal mucosa and keratinized gingiva; G. sanguinis on tongue dorsum, throat, and tonsils; and G. morbillorum in dental plaque. The gene-level basis of site-specificity was investigated by identifying genes that were core to Gemella genomes at a specific oral site but absent from other Gemella genomes. The riboflavin biosynthesis pathway was present in G. haemolysans genomes associated with buccal mucosa but absent from the rest of the genomes. Overall, metapangenomics show that Gemella species have clear ecological preferences in the oral cavity of healthy humans and provides an approach to identifying gene-level drivers of site specificity.
Recent studies uncovered that Fusobacterium nucleatum (Fn), a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils. We show that Fn survives within human neutrophils after phagocytosis. Using in vitro microfluidic devices, we determine that human neutrophils can protect and transport Fn over large distances. Moreover, we validate these observations in vivo by showing that neutrophils disseminate Fn using a zebrafish model. Our data support the emerging hypothesis that bacterial dissemination by neutrophils is a mechanistic link between oral and systemic diseases. Furthermore, our results may ultimately lead to therapeutic approaches that target specific host-bacteria interactions, including the dissemination process.
Decades of ongoing research has established that oral microbial communities play a role in oral diseases such as periodontitis and caries. Yet the detection of oral bacteria and the profiling of oral polymicrobial communities currently rely on methods that are costly, slow, and technically complex, such as qPCR or next-generation sequencing. For the widescale screening of oral microorganisms suitable for point-of-care settings, there exists the need for a low-cost, rapid detection technique. Here, we tailored the novel CRISPR-Cas-based assay SHERLOCK for the species-specific detection of oral bacteria. We developed a computational pipeline capable of generating constructs suitable for SHERLOCK and experimentally validated the detection of seven oral bacteria. We achieved detection within the single-molecule range that remained specific in the presence of off-target DNA found within saliva. Further, we adapted the assay for detecting target sequences directly from unprocessed saliva samples. The results of our detection, when tested on 30 healthy human saliva samples, fully aligned with 16S rRNA sequencing. Looking forward, this method of detecting oral bacteria is highly scalable and can be easily optimized for implementation at point-of-care settings.