Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in Drosophila melanogaster. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of DILP2 mRNA across generations and significant variations in PEPCK, SOD1, CAT, EGR, and UPD2 mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency.