L. Carbonari, S. Brillarelli, M. Palpacelli, M. Callegari
This paper is focused on the analysis of an elastodynamic model, typically referred to single-link flexible manipulators, when it is extended to multibody systems with closed-loop kinematic chains subject to vibrations, caused by the slenderness of their mechanical structure together with severe dynamic working conditions. The work is aimed at analyzing the relationship between the degree of accuracy of the proposed elastodynamic model, compared with more complete but time consuming models developed with software, and the time required for its computation, with the final aim of guiding its implementation in real-time control algorithms. Notwithstanding the study is proposed for parallel kinematic machines, the results are also valid for serial kinematic chains.
{"title":"Analysis of a Multibody Elastodynamic Model for Closed-Loop Kinematic Mechanisms","authors":"L. Carbonari, S. Brillarelli, M. Palpacelli, M. Callegari","doi":"10.1115/detc2019-97901","DOIUrl":"https://doi.org/10.1115/detc2019-97901","url":null,"abstract":"\u0000 This paper is focused on the analysis of an elastodynamic model, typically referred to single-link flexible manipulators, when it is extended to multibody systems with closed-loop kinematic chains subject to vibrations, caused by the slenderness of their mechanical structure together with severe dynamic working conditions. The work is aimed at analyzing the relationship between the degree of accuracy of the proposed elastodynamic model, compared with more complete but time consuming models developed with software, and the time required for its computation, with the final aim of guiding its implementation in real-time control algorithms. Notwithstanding the study is proposed for parallel kinematic machines, the results are also valid for serial kinematic chains.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123128016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changzheng Fang, Jing Yang, QUAN LIU, Furen Feng, Jianyong Zuo
In order to meet the increasing requirements of train safety in the rail transit industry, it is important for the operators to monitor the running status and health status of the train in real time. Based on train on-broad data, using big data analysis method for data mining to study the health status of trains and change rules, it will be helpful to realize the informationization and intelligence of train operation. This paper designs and introduces a smart device for the brake system of rail transit trains. It reads the required data through the train CAN Bus network, and uses the wireless transmission device DTU to remotely send the analysis result to the cloud server. The user can easily browse the train’s device status and system health analyzed by the server through the webpage anytime and anywhere, which is helpful for the health operations and management of trains. The equipment passed the relevant tests of the Changsha subway train in China, which can meet the needs of functional design.
{"title":"Research on an Intelligent Diagnostic Equipment Suitable for Rail Traffic Braking System","authors":"Changzheng Fang, Jing Yang, QUAN LIU, Furen Feng, Jianyong Zuo","doi":"10.1115/detc2019-97600","DOIUrl":"https://doi.org/10.1115/detc2019-97600","url":null,"abstract":"\u0000 In order to meet the increasing requirements of train safety in the rail transit industry, it is important for the operators to monitor the running status and health status of the train in real time. Based on train on-broad data, using big data analysis method for data mining to study the health status of trains and change rules, it will be helpful to realize the informationization and intelligence of train operation.\u0000 This paper designs and introduces a smart device for the brake system of rail transit trains. It reads the required data through the train CAN Bus network, and uses the wireless transmission device DTU to remotely send the analysis result to the cloud server. The user can easily browse the train’s device status and system health analyzed by the server through the webpage anytime and anywhere, which is helpful for the health operations and management of trains. The equipment passed the relevant tests of the Changsha subway train in China, which can meet the needs of functional design.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123172776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lean manufacturing practices focus on minimizing all forms of waste from the production system. The applicability of lean manufacturing concepts and principles has often been questioned in sectors including aerospace manufacturing primarily due to their high variety - low volume environments. The key challenges include the difficulty in changing the factory layout, lack of plant-specific manufacturing strategies, lack of benchmarking between manufacturing plants and non-existence of learning through experimentation culture. Consequently, the aerospace manufacturing industries have struggled to implement lean principles over the years successfully. Industry 4.0 is a new paradigm that is significantly influencing several manufacturing industries across the globe. Applying the concepts of Industry 4.0 along with the conventional lean transformation technology could potentially address these challenges. The focus of this research is to study the possibilities of integrating Industry 4.0 tools with existing lean manufacturing philosophies within the aerospace manufacturing sector in order to improve various aspects of manufacturing processes in a cyber-physical environment. A case study is performed considering a quality inspection department in a typical aerospace industry. The case study is simulated using discrete event simulation tool — Arena. The study found that a hybrid approach involving the holistic merger of the lean principles along with the Industry 4.0 tools known as Lean Industry 4.0 is the best way forward for the aerospace manufacturing sector. The outcomes of this research provide an understanding of the role of industry 4.0 paradigm and their implementation in several other high-technology and high-risk manufacturing sectors including life sciences, space, and defense industries.
{"title":"Study of Industry 4.0 and its Impact on Lean Transformation in Aerospace Manufacturing","authors":"Sagil James, A. Cervantes","doi":"10.1115/detc2019-98147","DOIUrl":"https://doi.org/10.1115/detc2019-98147","url":null,"abstract":"\u0000 Lean manufacturing practices focus on minimizing all forms of waste from the production system. The applicability of lean manufacturing concepts and principles has often been questioned in sectors including aerospace manufacturing primarily due to their high variety - low volume environments. The key challenges include the difficulty in changing the factory layout, lack of plant-specific manufacturing strategies, lack of benchmarking between manufacturing plants and non-existence of learning through experimentation culture. Consequently, the aerospace manufacturing industries have struggled to implement lean principles over the years successfully. Industry 4.0 is a new paradigm that is significantly influencing several manufacturing industries across the globe. Applying the concepts of Industry 4.0 along with the conventional lean transformation technology could potentially address these challenges. The focus of this research is to study the possibilities of integrating Industry 4.0 tools with existing lean manufacturing philosophies within the aerospace manufacturing sector in order to improve various aspects of manufacturing processes in a cyber-physical environment. A case study is performed considering a quality inspection department in a typical aerospace industry. The case study is simulated using discrete event simulation tool — Arena. The study found that a hybrid approach involving the holistic merger of the lean principles along with the Industry 4.0 tools known as Lean Industry 4.0 is the best way forward for the aerospace manufacturing sector. The outcomes of this research provide an understanding of the role of industry 4.0 paradigm and their implementation in several other high-technology and high-risk manufacturing sectors including life sciences, space, and defense industries.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115783754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents an optimal motion control scheme for a mechatronic actuator based on a dielectric elastomer membrane transducer. The optimal control problem is formulated such that a desired position set-point is reached with minimum amount of driving energy, characterized via an accurate physical model of the device. Since the considered actuator is strongly nonlinear, an approximated approach is required to practically address the design of the control system. In this work, an Adaptive Dynamic Programming based algorithm is proposed, capable of minimizing a cost function related to the energy consumption of the considered system. Simulation results are presented in order to assess the effectiveness of the proposed method, for different set-point regulation scenarios.
{"title":"Energy Optimal Control of Dielectric Elastomer Actuators via Adaptive Dynamic Programming","authors":"P. R. Massenio, D. Naso, G. Rizzello","doi":"10.1115/detc2019-98156","DOIUrl":"https://doi.org/10.1115/detc2019-98156","url":null,"abstract":"This paper presents an optimal motion control scheme for a mechatronic actuator based on a dielectric elastomer membrane transducer. The optimal control problem is formulated such that a desired position set-point is reached with minimum amount of driving energy, characterized via an accurate physical model of the device. Since the considered actuator is strongly nonlinear, an approximated approach is required to practically address the design of the control system. In this work, an Adaptive Dynamic Programming based algorithm is proposed, capable of minimizing a cost function related to the energy consumption of the considered system. Simulation results are presented in order to assess the effectiveness of the proposed method, for different set-point regulation scenarios.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121807751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hybrid electric propulsion system presents a feasible and attractive fuel cost and emission reduction solution for heavy-duty transportation applications, particularly for large marine vessels. The model of a specially designed hybrid electric powertrain system has been introduced. The work uses the acquired operation and power load patterns of the BC Ferries Skeena Queen as a case study to demonstrate the fuel cost and emission reduction potentials of the electrified technology by comparing results from three powertrain alternatives: traditional diesel engine, diesel-electric, and series hybrid electric. The results showed that the electrification and hybridization could significantly reduce both fuel cost and harmful emissions. The series hybrid electric powertrain system has been targeted in this work due to its relatively small powertrain architecture difference from the traditional diesel-electric powertrain, and the ease of control development.
{"title":"Modeling, Simulation and Assessment of a Hybrid Electric Ferry: Case Study for Mid-Size Ferry","authors":"Yanbiao Feng, L. Chen, Z. Dong","doi":"10.1115/detc2019-97382","DOIUrl":"https://doi.org/10.1115/detc2019-97382","url":null,"abstract":"\u0000 The hybrid electric propulsion system presents a feasible and attractive fuel cost and emission reduction solution for heavy-duty transportation applications, particularly for large marine vessels. The model of a specially designed hybrid electric powertrain system has been introduced. The work uses the acquired operation and power load patterns of the BC Ferries Skeena Queen as a case study to demonstrate the fuel cost and emission reduction potentials of the electrified technology by comparing results from three powertrain alternatives: traditional diesel engine, diesel-electric, and series hybrid electric. The results showed that the electrification and hybridization could significantly reduce both fuel cost and harmful emissions. The series hybrid electric powertrain system has been targeted in this work due to its relatively small powertrain architecture difference from the traditional diesel-electric powertrain, and the ease of control development.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115612390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spherical piezoelectric motors (SPMs) apply piezoelectric materials as stators to generate modal responses for rotor orientation. The SPMs have the advantages of simple structure and compact size but may suffer from the difficulty of orientation manipulation. This paper presents a novel electrode configuration based SPM design for simple multi degree-of-freedom (DOF) orientation manipulation. Four piezoelectric actuating units are adopted as stators to generate 12 orientations through the integration and switch of two vibration modes of each piezoelectric actuator, including lateral mode and longitudinal mode. The dynamic characteristics associated with the design parameters at each vibration mode are experimentally obtained to evaluate the performance of the proposed SPM design.
{"title":"Design of Multi-DOF Spherical Piezoelectric Motor Using Electrode Configuration Based Actuating Units","authors":"Chi-Ying Lin, Yu–Ting Sung, Yu-Hsi Huang","doi":"10.1115/detc2019-97116","DOIUrl":"https://doi.org/10.1115/detc2019-97116","url":null,"abstract":"\u0000 Spherical piezoelectric motors (SPMs) apply piezoelectric materials as stators to generate modal responses for rotor orientation. The SPMs have the advantages of simple structure and compact size but may suffer from the difficulty of orientation manipulation. This paper presents a novel electrode configuration based SPM design for simple multi degree-of-freedom (DOF) orientation manipulation. Four piezoelectric actuating units are adopted as stators to generate 12 orientations through the integration and switch of two vibration modes of each piezoelectric actuator, including lateral mode and longitudinal mode. The dynamic characteristics associated with the design parameters at each vibration mode are experimentally obtained to evaluate the performance of the proposed SPM design.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131567090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PID controllers tuning is a complex task from the optimization perspective because it is a multiobjective optimization problem, which must ensure the accomplishment of a set of desired operating conditions of the closed-loop system as the overshoot, the settling time, and the steady state error. Employing metaheuristic optimization techniques is possible to find optimal solutions for the PID tuning multiobjective optimization problem with less computational cost. This paper presents the using of genetic algorithms as metaheuristic optimization technique for the tuning of a PID controller employed for the speed control of a motor-generator system. The genetic algorithm is designed to find the PID controller proportional, integral, and derivate terms that ensure the desired overshoot and settling time of the motor-generator system. The practical implementation of the PID controller is performed with a data acquisition card and the Matlab Stateflow toolbox. The proposed controller is contrasted with a PID controller tuned by the Internal Model Control technique. A robustness analysis is performed to evaluate the system response in the presence of the external disturbances. Obtained results shown that the PID controller tuned by genetic algorithm has a better response in the presence of external disturbances.
{"title":"Metaheuristic Tuning and Practical Implementation of a PID Controller Employing Genetic Algorithms","authors":"L. Ángel, J. Viola, M. Vega","doi":"10.1115/detc2019-97479","DOIUrl":"https://doi.org/10.1115/detc2019-97479","url":null,"abstract":"\u0000 PID controllers tuning is a complex task from the optimization perspective because it is a multiobjective optimization problem, which must ensure the accomplishment of a set of desired operating conditions of the closed-loop system as the overshoot, the settling time, and the steady state error. Employing metaheuristic optimization techniques is possible to find optimal solutions for the PID tuning multiobjective optimization problem with less computational cost. This paper presents the using of genetic algorithms as metaheuristic optimization technique for the tuning of a PID controller employed for the speed control of a motor-generator system. The genetic algorithm is designed to find the PID controller proportional, integral, and derivate terms that ensure the desired overshoot and settling time of the motor-generator system. The practical implementation of the PID controller is performed with a data acquisition card and the Matlab Stateflow toolbox. The proposed controller is contrasted with a PID controller tuned by the Internal Model Control technique. A robustness analysis is performed to evaluate the system response in the presence of the external disturbances. Obtained results shown that the PID controller tuned by genetic algorithm has a better response in the presence of external disturbances.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129108331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the emergence of the concept of Industry 4.0, smart factories have started to be planned in which the production paradigm will change. Automated Guided Vehicles, abbreviated as AGV, that will perform load carrying and similar tasks in smart factories, Smart-AGVs, will try to reach their destinations on their own route instead of predetermined routes like in today’s factories. Moreover, since they will not reach their targets in a single way, they have to dock a target with their fine localization algorithms. In this paper, an affine Iterative Closest Point, abbreviated as ICP, based fine localization method is proposed, and applied on Smart-AGV docking problem in smart factories. ICP is a point set registration method but it is also used for localization applications due to its high precision. Affine ICP is an ICP variant which finds affine transformation between two point sets. In general, the objective function of ICP is constructed based on least square metric. In this study, we use affine ICP with correntropy metric. Correntropy is a similarity measure between two random variables, and affine ICP with correntropy tries to maximize the similarity between two point sets. Affine ICP has never been utilized in fine localization problem. We make an update on affine ICP by means of polar decomposition to reach transformation between two point sets in terms of rotation matrix and translation vector. The performance of the algorithm proposed is validated in simulation and the efficiency of it is demonstrated on MATLAB by comparing with the docking performance of the traditional ICP.
{"title":"Affine ICP for Fine Localization of Smart-AGVs in Smart Factories","authors":"Abdurrahman Yilmaz, H. Temeltas","doi":"10.1115/detc2019-97418","DOIUrl":"https://doi.org/10.1115/detc2019-97418","url":null,"abstract":"\u0000 With the emergence of the concept of Industry 4.0, smart factories have started to be planned in which the production paradigm will change. Automated Guided Vehicles, abbreviated as AGV, that will perform load carrying and similar tasks in smart factories, Smart-AGVs, will try to reach their destinations on their own route instead of predetermined routes like in today’s factories. Moreover, since they will not reach their targets in a single way, they have to dock a target with their fine localization algorithms. In this paper, an affine Iterative Closest Point, abbreviated as ICP, based fine localization method is proposed, and applied on Smart-AGV docking problem in smart factories. ICP is a point set registration method but it is also used for localization applications due to its high precision. Affine ICP is an ICP variant which finds affine transformation between two point sets. In general, the objective function of ICP is constructed based on least square metric. In this study, we use affine ICP with correntropy metric. Correntropy is a similarity measure between two random variables, and affine ICP with correntropy tries to maximize the similarity between two point sets. Affine ICP has never been utilized in fine localization problem. We make an update on affine ICP by means of polar decomposition to reach transformation between two point sets in terms of rotation matrix and translation vector. The performance of the algorithm proposed is validated in simulation and the efficiency of it is demonstrated on MATLAB by comparing with the docking performance of the traditional ICP.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129127334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Koopaee, C. Pretty, Koen Hendrik Johan Classens, Xiaoqi Chen
This paper introduces the equations of motion of modular 2D snake robots in the vertical plane. In particular, the kinematics of pedal wave motion (undulation in vertical plane) of modular snake robots is presented and using the Euler-Lagrange method, the equations of motion of the robot are obtained. Moreover, using the well-known Spring-Damper contact model, external contact forces are taken into account and pedal wave locomotion on uneven terrain is modelled and simulated. Enabled by the dynamical model of the robot, an adaptive controller based on external force feedback in gait parameter space is proposed and implemented, resulting in the robot to successfully climbing over a stair-type obstacle without any prior knowledge about the environment.
{"title":"Dynamical Modelling and Control of Snake-Like Motion in Vertical Plane for Locomotion in Unstructured Environments","authors":"M. J. Koopaee, C. Pretty, Koen Hendrik Johan Classens, Xiaoqi Chen","doi":"10.1115/detc2019-97227","DOIUrl":"https://doi.org/10.1115/detc2019-97227","url":null,"abstract":"\u0000 This paper introduces the equations of motion of modular 2D snake robots in the vertical plane. In particular, the kinematics of pedal wave motion (undulation in vertical plane) of modular snake robots is presented and using the Euler-Lagrange method, the equations of motion of the robot are obtained. Moreover, using the well-known Spring-Damper contact model, external contact forces are taken into account and pedal wave locomotion on uneven terrain is modelled and simulated. Enabled by the dynamical model of the robot, an adaptive controller based on external force feedback in gait parameter space is proposed and implemented, resulting in the robot to successfully climbing over a stair-type obstacle without any prior knowledge about the environment.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"268 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127547150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As driverless vehicles becoming more and more popular due to the development of artificial intelligence, human beings will gradually get free from the vehicle driving. However, unexpected oscillations may happen due to the unfamiliarity of the vehicle configuration when humans want to drive themselves, even the vehicle itself is stable. These driver-induced-oscillations are similar with the pilot-induced-oscillations (PIO) which is generally related with actuator rate limit in the aircraft systems. Thus, this study attempts to review the PIO issue briefly and provide a guidance to solve the potential human-in-the-loop unmanned driving challenge associated with rate limit effect.
{"title":"Pilot-Induced-Oscillations Issue in Driverless Car Age","authors":"Jie Yuan, Zhenlong Wu, S. Fei, Y. Chen","doi":"10.1115/detc2019-97939","DOIUrl":"https://doi.org/10.1115/detc2019-97939","url":null,"abstract":"\u0000 As driverless vehicles becoming more and more popular due to the development of artificial intelligence, human beings will gradually get free from the vehicle driving. However, unexpected oscillations may happen due to the unfamiliarity of the vehicle configuration when humans want to drive themselves, even the vehicle itself is stable. These driver-induced-oscillations are similar with the pilot-induced-oscillations (PIO) which is generally related with actuator rate limit in the aircraft systems. Thus, this study attempts to review the PIO issue briefly and provide a guidance to solve the potential human-in-the-loop unmanned driving challenge associated with rate limit effect.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123726215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}