{"title":"Data Programs at NBS/NIST: 1901–2021","authors":"H. Semerjian, Donald R Burgess","doi":"10.1063/5.0084230","DOIUrl":"https://doi.org/10.1063/5.0084230","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42363585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Huber, R. Perkins, Marc J. Assael, S. A. Monogenidou, R. Hellmann, J. Sengers
The International Association for the Properties of Water and Steam has adopted new formulations for the thermodynamic and transport properties of heavy water. This manuscript describes the development of a formulation for the thermal conductivity of heavy water that was adopted as an international standard in 2021. It is consistent with the equation of state adopted in 2017, revised slightly in 2018, and is valid for fluid states up to 825 K and 250 MPa with uncertainties ranging from 1.5% to 6% depending on the state point. Comparisons with experimental data and with an earlier thermal-conductivity formulation are presented. The 2021 formulation accounts for the critical enhancement of the thermal conductivity, which was not incorporated in the previous formulation. Furthermore, in the zero-density limit, the 2021 formulation is based on thermal conductivity values at temperatures from 250 to 2500 K obtained from the kinetic theory of polyatomic gases. In addition, the 2021 formulation is applicable in a larger range of pressures than the previous formulation.
{"title":"New International Formulation for the Thermal Conductivity of Heavy Water","authors":"M. Huber, R. Perkins, Marc J. Assael, S. A. Monogenidou, R. Hellmann, J. Sengers","doi":"10.1063/5.0084222","DOIUrl":"https://doi.org/10.1063/5.0084222","url":null,"abstract":"The International Association for the Properties of Water and Steam has adopted new formulations for the thermodynamic and transport properties of heavy water. This manuscript describes the development of a formulation for the thermal conductivity of heavy water that was adopted as an international standard in 2021. It is consistent with the equation of state adopted in 2017, revised slightly in 2018, and is valid for fluid states up to 825 K and 250 MPa with uncertainties ranging from 1.5% to 6% depending on the state point. Comparisons with experimental data and with an earlier thermal-conductivity formulation are presented. The 2021 formulation accounts for the critical enhancement of the thermal conductivity, which was not incorporated in the previous formulation. Furthermore, in the zero-density limit, the 2021 formulation is based on thermal conductivity values at temperatures from 250 to 2500 K obtained from the kinetic theory of polyatomic gases. In addition, the 2021 formulation is applicable in a larger range of pressures than the previous formulation.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45865453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atomic spectroscopy and atomic physics papers represent a significant part of publications in Journal of Physical and Chemical Reference Data (JPCRD). Critical compilations of spectroscopic data, accurate calculations of collisional parameters, and bibliography on spectral line profiles and shifts provided much needed information for plasma physics, astrophysics, lithography, fusion research, and other fields of science. We present a brief overview of the atomic physics research published in JPCRD over its first 50 years.
{"title":"Atomic Physics and Spectroscopy During the First 50 Years of JPCRD.","authors":"Yuri Ralchenko","doi":"10.1063/5.0087598","DOIUrl":"https://doi.org/10.1063/5.0087598","url":null,"abstract":"<p><p>Atomic spectroscopy and atomic physics papers represent a significant part of publications in Journal of Physical and Chemical Reference Data (JPCRD). Critical compilations of spectroscopic data, accurate calculations of collisional parameters, and bibliography on spectral line profiles and shifts provided much needed information for plasma physics, astrophysics, lithography, fusion research, and other fields of science. We present a brief overview of the atomic physics research published in JPCRD over its first 50 years.</p>","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":"51 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805324/pdf/nihms-1856720.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong Xiao, J. Trusler, Xiaoxian Yang, M. Thol, Saif Z. S. Al Ghafri, D. Rowland, E. May
{"title":"Equation of State for Solid Benzene Valid for Temperatures up to 470 K and Pressures up to 1800 MPa","authors":"Xiong Xiao, J. Trusler, Xiaoxian Yang, M. Thol, Saif Z. S. Al Ghafri, D. Rowland, E. May","doi":"10.1063/5.0065786","DOIUrl":"https://doi.org/10.1063/5.0065786","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46703760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Pan, Haiyang Zhang, G. Rouillé, B. Gao, L. Pitre
{"title":"Helmholtz Free Energy Equation of State for 3He–4He Mixtures at Temperatures Above 2.17 K","authors":"C. Pan, Haiyang Zhang, G. Rouillé, B. Gao, L. Pitre","doi":"10.1063/5.0056087","DOIUrl":"https://doi.org/10.1063/5.0056087","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49046782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IUPAC–NIST Solubility Data Series. 105. Solubility of Solid Alkanoic Acids, Alkenoic Acids, Alkanedioic Acids, and Alkenedioic Acids Dissolved in Neat Organic Solvents, Organic Solvent Mixtures, and Aqueous–Organic Solvent Mixtures. I. Alkanoic Acids","authors":"W. E. Acree, W. Waghorne","doi":"10.1063/5.0062574","DOIUrl":"https://doi.org/10.1063/5.0062574","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44515987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IUPAC–NIST Solubility Data Series. 105. Solubility of Solid Alkanoic Acids, Alkenoic Acids, Alkanedioic Acids, and Alkenedioic Acids Dissolved in Neat Organic Solvents, Organic Solvent Mixtures, and Aqueous–Organic Solvent Mixtures. II. Alkenoic and Alkynoic Acids","authors":"W. E. Acree, W. Waghorne","doi":"10.1063/5.0067051","DOIUrl":"https://doi.org/10.1063/5.0067051","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42287666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review, Tabulation, and Parameterization of M-Series X-Ray Production Cross Sections for Proton and Helium Ion Impact","authors":"Balwinder Singh, Shehla, S. Puri","doi":"10.1063/5.0058390","DOIUrl":"https://doi.org/10.1063/5.0058390","url":null,"abstract":"","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47448488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Equilibrium partition coefficients or partition ratios are a fundamental concept in physical chemistry, with wide applications in environmental chemistry. While comprehensive data compilations for the octanol–water partition ratio and the Henry’s law constant have existed for many years, no comparable effort for the octanol–air partition ratio (KOA) exists. Considering the increasing use of KOA in understanding a chemical’s partitioning between a wide variety of organic phases (organic phases in atmospheric particles, plant foliage, polymeric sorbents, soil organic matter, animal tissues, etc.) and the gas phase, we have compiled all KOA values reported in the published literature. The dataset includes more than 2500 experimentally derived values and more than 10 000 estimated values for KOA, in total covering over 1500 distinct molecules. The range of measured log10 KOA values extends from −2 to 13. Many more measured values have been reported in the log10 KOA range from 2 to 5 and from 6 to 11 compared to the range from 5 to 6, which is due to the complementary applicability range of static and dynamic measurement techniques. The compilation also identifies measured data that are judged not reliable. KOA values for substances capable of undergoing strong hydrogen bonding derived from regressions with retention times on nonpolar gas chromatographic columns deviate strongly from values estimated by prediction techniques that account for such intermolecular interactions and should be considered suspect. It is hoped that the database will serve as a source for locating existing KOA data and for the calibration and evaluation of new KOA prediction techniques.
{"title":"A Database of Experimentally Derived and Estimated Octanol–Air Partition Ratios (KOA)","authors":"S. Baskaran, Y. Lei, F. Wania","doi":"10.1063/5.0059652","DOIUrl":"https://doi.org/10.1063/5.0059652","url":null,"abstract":"Equilibrium partition coefficients or partition ratios are a fundamental concept in physical chemistry, with wide applications in environmental chemistry. While comprehensive data compilations for the octanol–water partition ratio and the Henry’s law constant have existed for many years, no comparable effort for the octanol–air partition ratio (KOA) exists. Considering the increasing use of KOA in understanding a chemical’s partitioning between a wide variety of organic phases (organic phases in atmospheric particles, plant foliage, polymeric sorbents, soil organic matter, animal tissues, etc.) and the gas phase, we have compiled all KOA values reported in the published literature. The dataset includes more than 2500 experimentally derived values and more than 10 000 estimated values for KOA, in total covering over 1500 distinct molecules. The range of measured log10 KOA values extends from −2 to 13. Many more measured values have been reported in the log10 KOA range from 2 to 5 and from 6 to 11 compared to the range from 5 to 6, which is due to the complementary applicability range of static and dynamic measurement techniques. The compilation also identifies measured data that are judged not reliable. KOA values for substances capable of undergoing strong hydrogen bonding derived from regressions with retention times on nonpolar gas chromatographic columns deviate strongly from values estimated by prediction techniques that account for such intermolecular interactions and should be considered suspect. It is hoped that the database will serve as a source for locating existing KOA data and for the calibration and evaluation of new KOA prediction techniques.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49300774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Ce of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Ce of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.
{"title":"Perspective on the Refractive-Index Gas Metrology Data Landscape","authors":"P. Rourke","doi":"10.1063/5.0055412","DOIUrl":"https://doi.org/10.1063/5.0055412","url":null,"abstract":"The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Ce of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Ce of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":"1 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42011356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}