Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to S-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein S-nitrosylation.
{"title":"Attenuation of protein arginine dimethylation via S-nitrosylation of protein arginine methyltransferase 1","authors":"Rikako Taniguchi , Yuto Moriya , Naoshi Dohmae , Takehiro Suzuki , Kengo Nakahara , Sho Kubota , Nobumasa Takasugi , Takashi Uehara","doi":"10.1016/j.jphs.2023.12.012","DOIUrl":"10.1016/j.jphs.2023.12.012","url":null,"abstract":"<div><p>Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via <em>S</em>-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. <em>S</em>-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to <em>S</em>-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein <em>S</em>-nitrosylation.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 3","pages":"Pages 209-217"},"PeriodicalIF":3.5,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000804/pdfft?md5=7fef0647d8a7b34f67165cac0c07fe9c&pid=1-s2.0-S1347861323000804-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.1016/j.jphs.2023.12.006
Takashi Ito , Shigeru Murakami
Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.
{"title":"Taurine deficiency associated with dilated cardiomyopathy and aging","authors":"Takashi Ito , Shigeru Murakami","doi":"10.1016/j.jphs.2023.12.006","DOIUrl":"10.1016/j.jphs.2023.12.006","url":null,"abstract":"<div><p>Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 3","pages":"Pages 175-181"},"PeriodicalIF":3.5,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000749/pdfft?md5=641c4731cf58f460278da1383b0d2915&pid=1-s2.0-S1347861323000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.jphs.2023.12.010
Takahiro Horinouchi , Yuichi Mazaki , Soichi Miwa
Heated tobacco products (HTPs) are marketed worldwide as less harmful alternatives to combustible cigarettes; however, their cytotoxic mechanisms in vascular smooth muscle cells are poorly understood. Ferroptosis is defined as iron-dependent cell death caused by the accumulation of lipid peroxidation products. In this study, the cytotoxic effects of nicotine- and tar-free cigarette smoke extracts (CSE) derived from three types of HTPs and the ferroptosis inducer, erastin, on vascular smooth muscle A7r5 cells were compared. Cigarette smoke from all HTPs was generated according to the following puffing regime: 55 mL, puff volume; 30 s, puff interval; 2 s, puff duration; bell-shaped, puff profile; and no blocking of the ventilation holes. Erastin and CSE decreased mitochondrial metabolic activity and increased lactate dehydrogenase leakage. The cytotoxic effects of erastin were almost completely inhibited by the radical-trapping antioxidant, UAMC-3203; iron chelator, deferoxamine mesylate (DFO); 12/15-lipoxygenase (12/15-LOX) inhibitor, baicalein; and selective 15-LOX inhibitor, ML351. In contrast, CSE-induced cell damage was partially attenuated by UAMC-3203, baicalein, and ML351 but not by DFO. These results suggest that erastin induces ferroptosis via 15-LOX-mediated iron-dependent lipid peroxidation, whereas CSE causes iron-independent cell damage via 15-LOX-mediated lipid peroxidation-dependent and -independent mechanisms.
{"title":"Mechanism of cytotoxicity induced by the cigarette smoke extract (CSE) of heated tobacco products in vascular smooth muscle cells: A comparative study of the cytotoxic effects of CSE and the ferroptosis inducer, erastin","authors":"Takahiro Horinouchi , Yuichi Mazaki , Soichi Miwa","doi":"10.1016/j.jphs.2023.12.010","DOIUrl":"10.1016/j.jphs.2023.12.010","url":null,"abstract":"<div><p>Heated tobacco products (HTPs) are marketed worldwide as less harmful alternatives to combustible cigarettes; however, their cytotoxic mechanisms in vascular smooth muscle cells are poorly understood. Ferroptosis is defined as iron-dependent cell death caused by the accumulation of lipid peroxidation products. In this study, the cytotoxic effects of nicotine- and tar-free cigarette smoke extracts (CSE) derived from three types of HTPs and the ferroptosis inducer, erastin, on vascular smooth muscle A7r5 cells were compared. Cigarette smoke from all HTPs was generated according to the following puffing regime: 55 mL, puff volume; 30 s, puff interval; 2 s, puff duration; bell-shaped, puff profile; and no blocking of the ventilation holes. Erastin and CSE decreased mitochondrial metabolic activity and increased lactate dehydrogenase leakage. The cytotoxic effects of erastin were almost completely inhibited by the radical-trapping antioxidant, UAMC-3203; iron chelator, deferoxamine mesylate (DFO); 12/15-lipoxygenase (12/15-LOX) inhibitor, baicalein; and selective 15-LOX inhibitor, ML351. In contrast, CSE-induced cell damage was partially attenuated by UAMC-3203, baicalein, and ML351 but not by DFO. These results suggest that erastin induces ferroptosis via 15-LOX-mediated iron-dependent lipid peroxidation, whereas CSE causes iron-independent cell damage via 15-LOX-mediated lipid peroxidation-dependent and -independent mechanisms.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 86-96"},"PeriodicalIF":3.5,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000786/pdfft?md5=26bf9b4bd7222688421b2adaa2ebaa34&pid=1-s2.0-S1347861323000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.jphs.2023.12.008
Akiyuki Nishimura , Liuchenzi Zhou , Yuri Kato , Xinya Mi , Tomoya Ito , Yuko Ibuki , Yasunari Kanda , Motohiro Nishida
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
{"title":"Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation","authors":"Akiyuki Nishimura , Liuchenzi Zhou , Yuri Kato , Xinya Mi , Tomoya Ito , Yuko Ibuki , Yasunari Kanda , Motohiro Nishida","doi":"10.1016/j.jphs.2023.12.008","DOIUrl":"10.1016/j.jphs.2023.12.008","url":null,"abstract":"<div><p>Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na<sub>2</sub>S<sub>3</sub> also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 127-135"},"PeriodicalIF":3.5,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000762/pdfft?md5=f18b81002348c43b61b1127c7a99c095&pid=1-s2.0-S1347861323000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.1016/j.jphs.2023.12.009
Cho-Rong Bae , Yeomyeong Kim , Young-Guen Kwon
Purpose
Acute kidney injury (AKI) is characterized by reduced renal function, oxidative stress, inflammation, and renal fibrosis. CU06-1004, an endothelial cell dysfunction blocker, exhibits anti-inflammatory effects by reducing vascular permeability in pathological conditions. However, the potential effects of CU06-1004 on AKI have not been investigated. We investigated the renoprotective effect of CU06-1004 against oxidative stress, inflammation, and fibrotic changes in a folic acid-induced AKI model.
Methods
AKI was induced by intraperitoneal injection of high dose (250 mg/kg) folic acid in mice. CU06-1004 was orally administered a low (10 mg/kg) or high dose (20 mg/kg).
Results
CU06-1004 ameliorated folic acid-induced AKI by decreasing serum blood urea nitrogen and creatinine levels, mitigating histological abnormalities, and decreasing tubular injury markers such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in folic acid-induced AKI mice. Additionally, CU06-1004 alleviated folic acid-induced oxidative stress by reducing 4-hydroxynonenal and malondialdehyde levels. Furthermore, it attenuated macrophage infiltration and suppressed the expression of the proinflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion protein-1. Moreover, CU06-1004 mitigated folic acid-induced tubulointerstitial fibrosis by decreasing α-smooth muscle actin and transforming growth factor-β expression.
Conclusion
These findings suggest CU06-1004 as a potential therapeutic agent for folic acid-induced AKI.
目的 急性肾损伤(AKI)的特点是肾功能减退、氧化应激、炎症和肾纤维化。CU06-1004 是一种内皮细胞功能障碍阻断剂,在病理情况下可降低血管通透性,从而起到抗炎作用。然而,CU06-1004 对 AKI 的潜在影响尚未得到研究。我们研究了 CU06-1004 在叶酸诱导的 AKI 模型中对氧化应激、炎症和纤维化变化的肾保护作用。结果CU06-1004通过降低叶酸诱导的AKI小鼠血清尿素氮和肌酐水平、减轻组织学异常以及减少肾损伤分子-1和中性粒细胞明胶酶相关脂褐素等肾小管损伤标志物,改善了叶酸诱导的AKI。此外,CU06-1004 还能降低 4-羟基壬烯醛和丙二醛的水平,从而减轻叶酸诱导的氧化应激。此外,CU06-1004 还能减轻巨噬细胞浸润,抑制肿瘤坏死因子-α、细胞间粘附分子-1 和血管细胞粘附蛋白-1 等促炎因子的表达。此外,CU06-1004 还能降低 α 平滑肌肌动蛋白和转化生长因子-β 的表达,从而减轻叶酸诱导的肾小管间质纤维化。
{"title":"CU06-1004 alleviates oxidative stress and inflammation on folic acid-induced acute kidney injury in mice","authors":"Cho-Rong Bae , Yeomyeong Kim , Young-Guen Kwon","doi":"10.1016/j.jphs.2023.12.009","DOIUrl":"10.1016/j.jphs.2023.12.009","url":null,"abstract":"<div><h3>Purpose</h3><p>Acute kidney injury (AKI) is characterized by reduced renal function, oxidative stress, inflammation, and renal fibrosis. CU06-1004, an endothelial cell dysfunction blocker, exhibits anti-inflammatory effects by reducing vascular permeability in pathological conditions. However, the potential effects of CU06-1004 on AKI have not been investigated. We investigated the renoprotective effect of CU06-1004 against oxidative stress, inflammation, and fibrotic changes in a folic acid-induced AKI model.</p></div><div><h3>Methods</h3><p>AKI was induced by intraperitoneal injection of high dose (250 mg/kg) folic acid in mice. CU06-1004 was orally administered a low (10 mg/kg) or high dose (20 mg/kg).</p></div><div><h3>Results</h3><p>CU06-1004 ameliorated folic acid-induced AKI by decreasing serum blood urea nitrogen and creatinine levels, mitigating histological abnormalities, and decreasing tubular injury markers such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in folic acid-induced AKI mice. Additionally, CU06-1004 alleviated folic acid-induced oxidative stress by reducing 4-hydroxynonenal and malondialdehyde levels. Furthermore, it attenuated macrophage infiltration and suppressed the expression of the proinflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion protein-1. Moreover, CU06-1004 mitigated folic acid-induced tubulointerstitial fibrosis by decreasing α-smooth muscle actin and transforming growth factor-β expression.</p></div><div><h3>Conclusion</h3><p>These findings suggest CU06-1004 as a potential therapeutic agent for folic acid-induced AKI.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 77-85"},"PeriodicalIF":3.5,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000774/pdfft?md5=d65f6766ca672922acb3e56e1e5331e8&pid=1-s2.0-S1347861323000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.jphs.2023.12.007
Zhenxing Su, Yunqin Kang
Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.
{"title":"Protective effect and regulatory mechanism of salidroside on skin inflammation induced by imiquimod in psoriasis mice","authors":"Zhenxing Su, Yunqin Kang","doi":"10.1016/j.jphs.2023.12.007","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.12.007","url":null,"abstract":"<p>Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.</p>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"249 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.jphs.2023.12.007
Zhenxing Su , Yunqin Kang
Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.
{"title":"Protective effect and regulatory mechanism of salidroside on skin inflammation induced by imiquimod in psoriasis mice","authors":"Zhenxing Su , Yunqin Kang","doi":"10.1016/j.jphs.2023.12.007","DOIUrl":"10.1016/j.jphs.2023.12.007","url":null,"abstract":"<div><p>Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1β), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 3","pages":"Pages 192-202"},"PeriodicalIF":3.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000750/pdfft?md5=bc2daa468c2c6322889441be04ecbbb4&pid=1-s2.0-S1347861323000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139026099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.
{"title":"Impaired monoamine neural system in the mPFC of SHRSP/Ezo as an animal model of attention-deficit/hyperactivity disorder","authors":"Naoya Suzuki , Sachiko Hiraide , Hiroki Shikanai , Takeru Isshiki , Taku Yamaguchi , Takeshi Izumi , Kenji Iizuka","doi":"10.1016/j.jphs.2023.12.002","DOIUrl":"10.1016/j.jphs.2023.12.002","url":null,"abstract":"<div><p>Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 61-71"},"PeriodicalIF":3.5,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000701/pdfft?md5=2a4f0a2749af2028745eaca39201c8f4&pid=1-s2.0-S1347861323000701-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress. This study investigated whether animals with naturally high IOP (>25 mmHg) could be used to effectively evaluate IOP-lowering drugs, thereby possibly replacing laser-induced models. Relationships between TIA size, IOP, and pupil diameter were also examined. Three representative IOP-lowering drugs (latanoprost, timolol, ripasudil) were administered, followed by multiple IOP measurements and assessment of corneal thickness, TIA, and pupil diameter via anterior segment optical coherence tomography (AS-OCT). There was a positive correlation was noted between IOP and corneal thickness before instillation, and a negative correlation between IOP and TIA before instillation. Our findings suggest animals with naturally high IOP could be beneficial for glaucoma research and development as a viable replacement for the laser-induced model and that measuring TIA using AS-OCT along with IOP yields a more detailed evaluation.
许多青光眼治疗方法都侧重于降低眼压(IOP),新型药物也在不断开发中。一种被广泛使用的模型是通过在猴子的小梁虹膜角(TIA)上使用激光来提高眼压,从而破坏小梁网。然而,这种模型也存在一些挑战,如不同的眼压值、潜在的小梁网损伤以及动物痛苦的风险。本研究调查了自然高眼压(25 mmHg)动物是否可用于有效评估降眼压药物,从而可能取代激光诱导模型。研究还考察了TIA大小、眼压和瞳孔直径之间的关系。在使用三种具有代表性的降眼压药物(拉坦前列素、噻吗洛尔、利帕舒地尔)后,通过前节光学相干断层扫描(AS-OCT)测量了多次眼压并评估了角膜厚度、TIA 和瞳孔直径。灌药前的眼压与角膜厚度呈正相关,灌药前的眼压与TIA呈负相关。我们的研究结果表明,天然高眼压动物可作为激光诱导模型的可行替代品,有益于青光眼的研究和开发,而且使用 AS-OCT 测量 TIA 和眼压可获得更详细的评估。
{"title":"Investigation into the usefulness of cynomolgus monkeys with spontaneously elevated intraocular pressure as a model for glaucoma treatment research","authors":"Tomoaki Araki , Masamitsu Shimazawa , Shinsuke Nakamura , Wataru Otsu , Yosuke Numata , Megumi Sakata , Koji Kabayama , Hideshi Tsusaki , Hideaki Hara","doi":"10.1016/j.jphs.2023.12.004","DOIUrl":"10.1016/j.jphs.2023.12.004","url":null,"abstract":"<div><p>Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress. This study investigated whether animals with naturally high IOP (>25 mmHg) could be used to effectively evaluate IOP-lowering drugs, thereby possibly replacing laser-induced models. Relationships between TIA size, IOP, and pupil diameter were also examined. Three representative IOP-lowering drugs (latanoprost, timolol, ripasudil) were administered, followed by multiple IOP measurements and assessment of corneal thickness, TIA, and pupil diameter via anterior segment optical coherence tomography (AS-OCT). There was a positive correlation was noted between IOP and corneal thickness before instillation, and a negative correlation between IOP and TIA before instillation. Our findings suggest animals with naturally high IOP could be beneficial for glaucoma research and development as a viable replacement for the laser-induced model and that measuring TIA using AS-OCT along with IOP yields a more detailed evaluation.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 52-60"},"PeriodicalIF":3.5,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000725/pdfft?md5=92f49fcdc2b8a6dc5b359320a43b5d4a&pid=1-s2.0-S1347861323000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (S)-norketamine ((S)-NK), (R)-NK, (2S,6S)-hydroxynorketamine, and (2R,6R)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (S)-NK showed a long-lasting (1 week) effect. Additionally, only (S)-NK improved reduced motivation both 30 min and 24 h after injection in the female encounter test. These results suggest that (S)-NK has potent and long-lasting antidepressant-like effects.
{"title":"Long-lasting anti-despair and anti-anhedonia effects of (S)-norketamine in social isolation-reared mice","authors":"Rei Yokoyama , Momoko Higuchi , Wataru Tanabe , Shinji Tsukada , Hisato Igarashi , Kaoru Seiriki , Takanobu Nakazawa , Atsushi Kasai , Yukio Ago , Hitoshi Hashimoto","doi":"10.1016/j.jphs.2023.12.005","DOIUrl":"10.1016/j.jphs.2023.12.005","url":null,"abstract":"<div><p>Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (<em>S</em>)-norketamine ((<em>S</em>)-NK), (<em>R</em>)-NK, (<em>2S,6S</em>)-hydroxynorketamine, and (<em>2R,6R</em>)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (<em>S</em>)-NK showed a long-lasting (1 week) effect. Additionally, only (<em>S</em>)-NK improved reduced motivation both 30 min and 24 h after injection in the female encounter test. These results suggest that (<em>S</em>)-NK has potent and long-lasting antidepressant-like effects.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 72-76"},"PeriodicalIF":3.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000737/pdfft?md5=1b245c7e64b23f716e19cc9fd46c5ab8&pid=1-s2.0-S1347861323000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}