Goreisan is a Kampo medicine used to treat headaches associated with climate change. Here, by using an implantable complementary metal-oxide-semiconductor (CMOS) device, we evaluated the effects of Goreisan and loxoprofen on cerebral blood flow (CBF) dynamics associated with barometric pressure fluctuations in freely moving mice. In the vehicle group, decreasing barometric pressure increased CBF that was prevented by Goreisan and loxoprofen. Notably, Goreisan, but not loxoprofen, reduced CBF after returning to atmospheric pressure. These results indicate that, unlike the mechanism of action of antipyretic analgesics, Goreisan normalizes CBF abnormalities associated with barometric pressure fluctuations by actively reducing CBF increase.
{"title":"Goreisan regulates cerebral blood flow according to barometric pressure fluctuations in female C57BL/6J mice","authors":"Yuki Kurauchi , Sumika Ryu , Risako Tanaka , Makito Haruta , Kiyotaka Sasagawa , Takahiro Seki , Jun Ohta , Hiroshi Katsuki","doi":"10.1016/j.jphs.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.12.001","url":null,"abstract":"<div><p>Goreisan is a Kampo medicine used to treat headaches associated with climate change. Here, by using an implantable complementary metal-oxide-semiconductor (CMOS) device, we evaluated the effects of Goreisan and loxoprofen on cerebral blood flow (CBF) dynamics associated with barometric pressure fluctuations in freely moving mice. In the vehicle group, decreasing barometric pressure increased CBF that was prevented by Goreisan and loxoprofen. Notably, Goreisan, but not loxoprofen, reduced CBF after returning to atmospheric pressure. These results indicate that, unlike the mechanism of action of antipyretic analgesics, Goreisan normalizes CBF abnormalities associated with barometric pressure fluctuations by actively reducing CBF increase.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 2","pages":"Pages 47-51"},"PeriodicalIF":3.5,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000695/pdfft?md5=58e87573df08fce875cca140e3733fee&pid=1-s2.0-S1347861323000695-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138570403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AMPK activation promotes glucose and lipid metabolism. Here, we found that our previously reported ADAM17 inhibitor SN-4 activates AMPK and promotes membrane translocation and sugar uptake of GLUT4. AMPK inhibitor dorsomorphin reversed this effect of SN-4, confirming that the effect is mediated by AMPK activation. In addition, SN-4 inhibited lipid accumulation in HepG2 under high glucose conditions by promoting lipid metabolism and inhibiting lipid synthesis. Although lactic acidosis is a serious side effect of biguanides such as metformin, SN-4 did not affect lactate production. Furthermore, SN-4 was confirmed to inhibit the release of TNF-α, a causative agent of insulin resistance, from adipocytes. In diabetes treatment, it is important to not only regulate blood sugar levels but also prevent complications. Our findings reveal the therapeutic potential of SN-4 as a new antidiabetic drug that can also help prevent future complications.
{"title":"An ADAM17 selective inhibitor promotes glucose uptake by activating AMPK","authors":"Tsugumasa Toma , Nobukazu Miyakawa , Mika Tateishi , Mikio Todaka , Tatsuya Kondo , Mikako Fujita , Masami Otsuka , Eiichi Araki , Hiroshi Tateishi","doi":"10.1016/j.jphs.2023.11.005","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.11.005","url":null,"abstract":"<div><p>AMPK activation promotes glucose and lipid metabolism. Here, we found that our previously reported ADAM17 inhibitor SN-4 activates AMPK and promotes membrane translocation and sugar uptake of GLUT4. AMPK inhibitor dorsomorphin reversed this effect of SN-4, confirming that the effect is mediated by AMPK activation. In addition, SN-4 inhibited lipid accumulation in HepG2 under high glucose conditions by promoting lipid metabolism and inhibiting lipid synthesis. Although lactic acidosis is a serious side effect of biguanides such as metformin, SN-4 did not affect lactate production. Furthermore, SN-4 was confirmed to inhibit the release of TNF-α, a causative agent of insulin resistance, from adipocytes. In diabetes treatment, it is important to not only regulate blood sugar levels but also prevent complications. Our findings reveal the therapeutic potential of SN-4 as a new antidiabetic drug that can also help prevent future complications.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 1","pages":"Pages 37-46"},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000671/pdfft?md5=6af46222c2edb57117193f8f9f771b35&pid=1-s2.0-S1347861323000671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crohn's disease, a chronic and recurrent gastrointestinal disease, frequently causes intestinal fibrosis. Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is activated by reactive oxygen species. This study investigated the role of TRPM2 in acute colitis and chronic colitis-associated fibrosis progression. Acute colitis and chronic colitis-associated fibrosis were induced in TRPM2-deficient (TRPM2KO) and wild-type (WT) mice through single and repeated intrarectal injections of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Bone marrow-derived macrophages (BMDMs) from WT and TRPM2KO mice were stimulated using H2O2. In WT mice, a single TNBS injection induced acute colitis with upregulated inflammatory cytokines/chemokines and Th1/Th17-related cytokines, while repeated TNBS injections induced chronic colitis-associated fibrosis with upregulation of fibrogenic factors and Th2-related cytokines. Acute colitis and chronic colitis-associated fibrosis with cytokines/chemokine upregulation and fibrogenic factors were considerably suppressed in TRPM2KO mice. Treating BMDMs with H2O2 increased cytokine/chemokine expression and JNK, ERK, and p38 phosphorylation; however, these responses were significantly less in TRPM2KO than in WT mice. These findings suggest that TRPM2 contributes to acute colitis progression via Th1/Th17-mediated immune responses. Furthermore, TRPM2 may be directly involved in colitis-associated fibrosis induction, likely due to the regulation of Th2/TGF-β1-mediated fibrogenesis in addition to a consequence of acute colitis progression.
{"title":"Transient receptor potential melastatin 2 is involved in trinitrobenzene sulfonic acid-induced acute and chronic colitis-associated fibrosis progression in mice","authors":"Tomohiro Nakamoto , Kenjiro Matsumoto , Hiroyuki Yasuda , Yasuo Mori , Shinichi Kato","doi":"10.1016/j.jphs.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.11.004","url":null,"abstract":"<div><p>Crohn's disease, a chronic and recurrent gastrointestinal disease, frequently causes intestinal fibrosis. Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is activated by reactive oxygen species. This study investigated the role of TRPM2 in acute colitis and chronic colitis-associated fibrosis progression. Acute colitis and chronic colitis-associated fibrosis were induced in TRPM2-deficient (TRPM2KO) and wild-type (WT) mice through single and repeated intrarectal injections of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Bone marrow-derived macrophages (BMDMs) from WT and TRPM2KO mice were stimulated using H<sub>2</sub>O<sub>2</sub>. In WT mice, a single TNBS injection induced acute colitis with upregulated inflammatory cytokines/chemokines and Th1/Th17-related cytokines, while repeated TNBS injections induced chronic colitis-associated fibrosis with upregulation of fibrogenic factors and Th2-related cytokines. Acute colitis and chronic colitis-associated fibrosis with cytokines/chemokine upregulation and fibrogenic factors were considerably suppressed in TRPM2KO mice. Treating BMDMs with H<sub>2</sub>O<sub>2</sub> increased cytokine/chemokine expression and JNK, ERK, and p38 phosphorylation; however, these responses were significantly less in TRPM2KO than in WT mice. These findings suggest that TRPM2 contributes to acute colitis progression via Th1/Th17-mediated immune responses. Furthermore, TRPM2 may be directly involved in colitis-associated fibrosis induction, likely due to the regulation of Th2/TGF-β1-mediated fibrogenesis in addition to a consequence of acute colitis progression.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 1","pages":"Pages 18-29"},"PeriodicalIF":3.5,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000683/pdfft?md5=b9f714b60e7838c16b2e508de659a3cc&pid=1-s2.0-S1347861323000683-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138474599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.
{"title":"Simultaneous XIAP and cIAP1/2 inhibition by a dimeric SMAC mimetic AZD5582 induces apoptosis in multiple myeloma","authors":"Shohei Kikuchi , Yusuke Sugama , Kohichi Takada , Yusuke Kamihara , Akinori Wada , Yohei Arihara , Hajime Nakamura , Tsutomu Sato","doi":"10.1016/j.jphs.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.11.002","url":null,"abstract":"<div><p>Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C<sub>58</sub>H<sub>78</sub>N<sub>8</sub>O<sub>8</sub>), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 1","pages":"Pages 30-36"},"PeriodicalIF":3.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000658/pdfft?md5=a640140a34a7ae197a134dd8fa319dda&pid=1-s2.0-S1347861323000658-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1016/j.jphs.2023.11.003
Teruo Miyazaki
Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.
{"title":"Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis","authors":"Teruo Miyazaki","doi":"10.1016/j.jphs.2023.11.003","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.11.003","url":null,"abstract":"<div><p>Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 1","pages":"Pages 9-17"},"PeriodicalIF":3.5,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S134786132300066X/pdfft?md5=749d85b000b6fb3a6ddd4535e4cb6561&pid=1-s2.0-S134786132300066X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138474600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-β1.
Methods
We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-β1 in human dermal fibroblasts (HDFs).
Findings
Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-β1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-β1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-β1.
Conclusion
The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-β, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.
{"title":"Development of multifunctional pyrrole-imidazole polyamides that increase hepatocyte growth factor and suppress transforming growth factor-β1","authors":"Lan Chen , Noboru Fukuda , Takahiro Ueno , Masanori Abe , Taro Matsumoto","doi":"10.1016/j.jphs.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.11.001","url":null,"abstract":"<div><h3>Purpose</h3><p>The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-β1.</p></div><div><h3>Methods</h3><p>We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-β1 in human dermal fibroblasts (HDFs).</p></div><div><h3>Findings</h3><p>Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-β1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-β1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-β1.</p></div><div><h3>Conclusion</h3><p>The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-β, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"154 1","pages":"Pages 1-8"},"PeriodicalIF":3.5,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861323000646/pdfft?md5=e696637d39f9ad3169cdc5e23ee6d349&pid=1-s2.0-S1347861323000646-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138472473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.1016/j.jphs.2023.10.002
Lei Xu , Gang Xu , Na Sun , Jialin Yao , Changyuan Wang , Wanhao Zhang , Kang Tian , Mozhen Liu , Huijun Sun
Objective
To investigate the effects of CA on glucocorticoid-induced osteoporosis (GIOP) and lucubrate the underlying mechanism of CA via the activation of polycystic kidney disease-1(PKD1) in bone marrow mesenchymal stem cells (BMSCs).
Methods
In vivo, a GIOP model in mice treated with dexamethasone (Dex) was established. Biomechanical, micro-CT, immunofluorescence staining of OCN, ALP and PKD1 and others were severally determined. qRT-PCR and Western blot methods were adopted to elucidate the particular mechanisms of CA on GIOP. In addition, BMSCs cultured in vitro were also induced by Dex to verify the effects of CA. Finally, siRNA and luciferase activity assays were performed to confirm the mechanisms.
Results
We found that CA could restore the destroyed bone microarchitecture and increase the bone mass in GIOP mice. CA could also upregulate PKD1 protein expression, reduce oxidative stress, and promote mRNA expression of bone formation-associated markers in GIOP mice. Furthermore, it was also observed that CA reduced oxidative stress and promoted osteogenic differentiation in Dex-induced BMSCs. Mechanically, CA could promote protein expression via increasing the activity of PKD1 promoter.
Conclusion
This study provides important evidences for CA in the further clinical treatment of GIOP, reveals the activation of PKD1 promoter as the underlying mechanism.
{"title":"Catalpol ameliorates dexamethasone-induced osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via the activation of PKD1 promoter","authors":"Lei Xu , Gang Xu , Na Sun , Jialin Yao , Changyuan Wang , Wanhao Zhang , Kang Tian , Mozhen Liu , Huijun Sun","doi":"10.1016/j.jphs.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.10.002","url":null,"abstract":"<div><h3>Objective</h3><p>To investigate the effects of CA on glucocorticoid-induced osteoporosis (GIOP) and lucubrate the underlying mechanism of CA via the activation of polycystic kidney disease-1(PKD1) in bone marrow mesenchymal stem cells (BMSCs).</p></div><div><h3>Methods</h3><p>In vivo, a GIOP model in mice treated with dexamethasone (Dex) was established. Biomechanical, micro-CT, immunofluorescence staining of OCN, ALP and PKD1 and others were severally determined. qRT-PCR and Western blot methods were adopted to elucidate the particular mechanisms of CA on GIOP. In addition, BMSCs cultured in vitro were also induced by Dex to verify the effects of CA. Finally, siRNA and luciferase activity assays were performed to confirm the mechanisms.</p></div><div><h3>Results</h3><p>We found that CA could restore the destroyed bone microarchitecture and increase the bone mass in GIOP mice. CA could also upregulate PKD1 protein expression, reduce oxidative stress, and promote mRNA expression of bone formation-associated markers in GIOP mice. Furthermore, it was also observed that CA reduced oxidative stress and promoted osteogenic differentiation in Dex-induced BMSCs. Mechanically, CA could promote protein expression via increasing the activity of PKD1 promoter.</p></div><div><h3>Conclusion</h3><p>This study provides important evidences for CA in the further clinical treatment of GIOP, reveals the activation of PKD1 promoter as the underlying mechanism.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"153 4","pages":"Pages 221-231"},"PeriodicalIF":3.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.
{"title":"CA9 and PRELID2; hypoxia-responsive potential therapeutic targets for pancreatic ductal adenocarcinoma as per bioinformatics analyses","authors":"Masaki Imanishi , Takahisa Inoue , Keijo Fukushima , Ryosuke Yamashita , Ryo Nakayama , Masataka Nojima , Kosuke Kondo , Yoshiki Gomi , Honoka Tsunematsu , Kohei Goto , Licht Miyamoto , Masafumi Funamoto , Masaya Denda , Keisuke Ishizawa , Akira Otaka , Hiromichi Fujino , Yasumasa Ikeda , Koichiro Tsuchiya","doi":"10.1016/j.jphs.2023.10.003","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.10.003","url":null,"abstract":"<div><p>A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected <em>CA9</em> and <em>PRELID2</em> as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"153 4","pages":"Pages 232-242"},"PeriodicalIF":3.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs).
Methods
MEFs carrying a Bmal1-Emerald luciferase (Bmal1-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, Bmal1-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively.
Results
Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the Bmal1-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (Bmal1, Per1, and Cry1). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both Bmal1-ELuc expression and clock gene mRNA expression.
Conclusion
Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects in vivo.
{"title":"Imeglimin profoundly affects the circadian clock in mouse embryonic fibroblasts","authors":"Kotomi Miura , Jun-ichi Morishige , Jotaro Abe , Pingping Xu , Yifan Shi , Zheng Jing , Naoto Nagata , Ryo Miyazaki , Naoki Sakane , Michihiro Mieda , Masanori Ono , Yoshiko Maida , Tomoko Fujiwara , Hiroshi Fujiwara , Hitoshi Ando","doi":"10.1016/j.jphs.2023.10.001","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.10.001","url":null,"abstract":"<div><h3>Objective</h3><p>Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs).</p></div><div><h3>Methods</h3><p>MEFs carrying a <em>Bmal1</em>-Emerald luciferase (<em>Bmal1</em>-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, <em>Bmal1</em>-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively.</p></div><div><h3>Results</h3><p>Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the <em>Bmal1</em>-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (<em>Bmal1</em>, <em>Per1,</em> and <em>Cry1</em>). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both <em>Bmal1</em>-ELuc expression and clock gene mRNA expression.</p></div><div><h3>Conclusion</h3><p>Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects <em>in vivo</em>.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"153 4","pages":"Pages 215-220"},"PeriodicalIF":3.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural compounds with sulfur moiety produce various biological actions that may be beneficial for the therapies of several devastative disorders of the central nervous system. Here we investigated potential therapeutic effect of allicin, an organosulfur compound derived from garlic, in a mouse model of intracerebral hemorrhage (ICH) based on intrastriatal collagenase injection. Daily intraperitoneal administration of allicin (50 mg/kg) from 3 h after induction of ICH afforded neuroprotective effects, as evidenced by the increase of surviving neurons in the hematoma, reduction of axonal transport impairment, and prevention of axon tract injury. In addition, allicin inhibited accumulation of activated microglia/macrophages around the hematoma and infiltration of neutrophils within the hematoma. Allicin also suppressed ICH-induced mRNA upregulation of pro-inflammatory factors such as interleukin 6 and C-X-C motif ligand 2 in the brain, suggesting its anti-inflammatory effect. Moreover, ICH-induced increase of malondialdehyde as well as decrease of total glutathione in the brain was attenuated by allicin. Finally, allicin-treated mice showed better recovery of sensorimotor functions after ICH than vehicle-treated mice. These results indicate that allicin produces a therapeutic effect on ICH pathology via alleviation of neuronal damage, inflammatory responses and oxidative stress in the brain.
{"title":"Therapeutic effect of allicin in a mouse model of intracerebral hemorrhage","authors":"Yara Atef , Keita Kinoshita , Yusei Ichihara , Keisuke Ushida , Yuma Hirata , Yuki Kurauchi , Takahiro Seki , Hiroshi Katsuki","doi":"10.1016/j.jphs.2023.09.007","DOIUrl":"https://doi.org/10.1016/j.jphs.2023.09.007","url":null,"abstract":"<div><p>Natural compounds with sulfur moiety produce various biological actions that may be beneficial for the therapies of several devastative disorders of the central nervous system. Here we investigated potential therapeutic effect of allicin, an organosulfur compound derived from garlic, in a mouse model of intracerebral hemorrhage (ICH) based on intrastriatal collagenase injection. Daily intraperitoneal administration of allicin (50 mg/kg) from 3 h after induction of ICH afforded neuroprotective effects, as evidenced by the increase of surviving neurons in the hematoma, reduction of axonal transport impairment, and prevention of axon tract injury. In addition, allicin inhibited accumulation of activated microglia/macrophages around the hematoma and infiltration of neutrophils within the hematoma. Allicin also suppressed ICH-induced mRNA upregulation of pro-inflammatory factors such as interleukin 6 and C-X-C motif ligand 2 in the brain, suggesting its anti-inflammatory effect. Moreover, ICH-induced increase of malondialdehyde as well as decrease of total glutathione in the brain was attenuated by allicin. Finally, allicin-treated mice showed better recovery of sensorimotor functions after ICH than vehicle-treated mice. These results indicate that allicin produces a therapeutic effect on ICH pathology via alleviation of neuronal damage, inflammatory responses and oxidative stress in the brain.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"153 4","pages":"Pages 208-214"},"PeriodicalIF":3.5,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}