Seaweeds are widely assumed to be phenotypically plastic across hydrodynamic gradients, yet while many marine macroalgae exhibit intraspecific phenotypic variation that correlates with flow, researchers often fail to test whether such variation is due to plasticity or another mechanism, such as local adaptation. In this minireview, we considered mechanisms for sensing flow in seaweeds that could facilitate adaptive phenotypic plasticity across hydrodynamic gradients. We then reviewed the literature from 1900 to 2024 to see how often phenotypic variation and plasticity across hydrodynamic gradients had been observed and demonstrated in different groups of seaweeds. In the last 124 years, phenotypic variation and plasticity in response to flow have been well documented in brown algae but scarcely documented in red and green algae. This could suggest that brown algae are better able to sense and respond to flow than red and green algae, perhaps due to the intercalary meristem of many brown algae, including most kelps. However, this skewed distribution could also be the result of publication bias, as most studies involving flow have been conducted on brown algae. Only 30% of 141 papers specifically investigated if observations of phenotypic variation along hydrodynamic gradients were due to plasticity. To date, phenotypic plasticity in response to flow has been demonstrated in 20 brown algal species, five red algal species, and two green algal species. Thus, the assumption that phenotypic plasticity to flow is common across seaweeds is not particularly well supported by the literature. Mechanisms underlying plasticity to flow are poorly understood and remain a critical avenue for future research.
{"title":"Grow with the flow: Is phenotypic plasticity across hydrodynamic gradients common in seaweeds?","authors":"Liam J. M. Coleman, Patrick T. Martone","doi":"10.1111/jpy.13503","DOIUrl":"10.1111/jpy.13503","url":null,"abstract":"<p>Seaweeds are widely assumed to be phenotypically plastic across hydrodynamic gradients, yet while many marine macroalgae exhibit intraspecific phenotypic variation that correlates with flow, researchers often fail to test whether such variation is due to plasticity or another mechanism, such as local adaptation. In this minireview, we considered mechanisms for sensing flow in seaweeds that could facilitate adaptive phenotypic plasticity across hydrodynamic gradients. We then reviewed the literature from 1900 to 2024 to see how often phenotypic variation and plasticity across hydrodynamic gradients had been observed and demonstrated in different groups of seaweeds. In the last 124 years, phenotypic variation and plasticity in response to flow have been well documented in brown algae but scarcely documented in red and green algae. This could suggest that brown algae are better able to sense and respond to flow than red and green algae, perhaps due to the intercalary meristem of many brown algae, including most kelps. However, this skewed distribution could also be the result of publication bias, as most studies involving flow have been conducted on brown algae. Only 30% of 141 papers specifically investigated if observations of phenotypic variation along hydrodynamic gradients were due to plasticity. To date, phenotypic plasticity in response to flow has been demonstrated in 20 brown algal species, five red algal species, and two green algal species. Thus, the assumption that phenotypic plasticity to flow is common across seaweeds is not particularly well supported by the literature. Mechanisms underlying plasticity to flow are poorly understood and remain a critical avenue for future research.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to global rises in temperature, recent studies predict marine species shifting toward higher latitudes. We investigated the impact of interacting abiotic drivers on the distribution potential of the temperate kelp Laminaria hyperborea. The ecosystem engineering species is widespread along European coasts but has not yet been observed in the High Arctic, although it can survive several months of low temperatures and darkness. To investigate its ability to extend northward in future, we conducted a long-term multifactorial experiment with sporophytes from Porsangerfjorden, Norway—close to the species' documented northernmost distribution margin. The samples were exposed to three different photoperiods (PolarDay, LongDay, and PolarNight) at 0°C, 5°C, and 10°C for 3 months. Optimum quantum yield of photosynthesis (Fv/Fm), dry weight, pigments, phlorotannins, and storage carbohydrates were monitored. Both physiological and biochemical parameters revealed that L. hyperborea was strongly influenced by the different photoperiods and their interaction with temperature, while temperature alone exerted only minor effects. The Fv/Fm data were integrated into a species distribution model to project a possible northward expansion of L. hyperborea. The combination of extended day lengths and low temperatures appeared to be the limiting reason for northward spread of L. hyperborea until recently. However, with water temperatures reaching 10°C in summer, this kelp will be able to thrive also in the High Arctic. Moreover, no evidence of stress to Arctic winter warming was observed. Consequently, L. hyperborea has a high potential for spreading northward with further warming which may significantly affect the structure and function of Arctic ecosystems.
{"title":"Photoperiod and temperature interactions drive the latitudinal distribution of Laminaria hyperborea (Laminariales, Phaeophyceae) under climate change","authors":"Nora Diehl, Philipp Laeseke, Inka Bartsch, Margot Bligh, Hagen Buck-Wiese, Jan-Hendrik Hehemann, Sarina Niedzwiedz, Niklas Plag, Ulf Karsten, Tifeng Shan, Kai Bischof","doi":"10.1111/jpy.13497","DOIUrl":"10.1111/jpy.13497","url":null,"abstract":"<p>Due to global rises in temperature, recent studies predict marine species shifting toward higher latitudes. We investigated the impact of interacting abiotic drivers on the distribution potential of the temperate kelp <i>Laminaria hyperborea</i>. The ecosystem engineering species is widespread along European coasts but has not yet been observed in the High Arctic, although it can survive several months of low temperatures and darkness. To investigate its ability to extend northward in future, we conducted a long-term multifactorial experiment with sporophytes from Porsangerfjorden, Norway—close to the species' documented northernmost distribution margin. The samples were exposed to three different photoperiods (PolarDay, LongDay, and PolarNight) at 0°C, 5°C, and 10°C for 3 months. Optimum quantum yield of photosynthesis (<i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>), dry weight, pigments, phlorotannins, and storage carbohydrates were monitored. Both physiological and biochemical parameters revealed that <i>L. hyperborea</i> was strongly influenced by the different photoperiods and their interaction with temperature, while temperature alone exerted only minor effects. The <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub> data were integrated into a species distribution model to project a possible northward expansion of <i>L. hyperborea</i>. The combination of extended day lengths and low temperatures appeared to be the limiting reason for northward spread of <i>L. hyperborea</i> until recently. However, with water temperatures reaching 10°C in summer, this kelp will be able to thrive also in the High Arctic. Moreover, no evidence of stress to Arctic winter warming was observed. Consequently, <i>L. hyperborea</i> has a high potential for spreading northward with further warming which may significantly affect the structure and function of Arctic ecosystems.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Bryłka, Matt P. Ashworth, Andrew J. Alverson, Daniel J. Conley
The Cretaceous period is the time of the first appearance of the diatoms in the fossil record. These fossils give us direct evidence of the age and early evolution of the diatom lineage. The fossil record, however, is incomplete and therefore often extrapolated through time-calibrated phylogenies. These two approaches offer different perspectives on the early evolution of diatoms, which is still poorly understood. We compiled the first comprehensive Cretaceous Diatom Database, a tool to investigate the taxonomy, diversity, and occurrence of the earliest known diatom lineages. To further aid the integration and use of the oldest diatom fossils in molecular clock analyses, we present a set of well-documented Cretaceous fossils that can be placed onto molecular phylogenetic trees of extant and extinct species, making them ideal candidates for the calibration of molecular clocks. The analysis of the fossil record and the Cretaceous Diatom Database revealed Cretaceous diversity is substantially greater than previously thought, yet considerable taxonomic work is still needed. The Cretaceous Diatom Database and the list of Cretaceous fossils for calibrating molecular clocks represent valuable resources for future evolutionary and taxonomic studies of modern and fossil diatoms.
{"title":"The Cretaceous Diatom Database: A tool for investigating early diatom evolution","authors":"Karolina Bryłka, Matt P. Ashworth, Andrew J. Alverson, Daniel J. Conley","doi":"10.1111/jpy.13499","DOIUrl":"10.1111/jpy.13499","url":null,"abstract":"<p>The Cretaceous period is the time of the first appearance of the diatoms in the fossil record. These fossils give us direct evidence of the age and early evolution of the diatom lineage. The fossil record, however, is incomplete and therefore often extrapolated through time-calibrated phylogenies. These two approaches offer different perspectives on the early evolution of diatoms, which is still poorly understood. We compiled the first comprehensive Cretaceous Diatom Database, a tool to investigate the taxonomy, diversity, and occurrence of the earliest known diatom lineages. To further aid the integration and use of the oldest diatom fossils in molecular clock analyses, we present a set of well-documented Cretaceous fossils that can be placed onto molecular phylogenetic trees of extant and extinct species, making them ideal candidates for the calibration of molecular clocks. The analysis of the fossil record and the Cretaceous Diatom Database revealed Cretaceous diversity is substantially greater than previously thought, yet considerable taxonomic work is still needed. The Cretaceous Diatom Database and the list of Cretaceous fossils for calibrating molecular clocks represent valuable resources for future evolutionary and taxonomic studies of modern and fossil diatoms.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John P. Smol, Kathleen M. Rühland, Neal Michelutti, Marlene S. Evans
Arctic freshwater ecosystems are on the “frontline” of climate change, but due to a lack of direct long-term monitoring data, indirect approaches, such as algal-based paleolimnology, must be used to reconstruct past limnological conditions. Our understanding of the responses of small- to mid-sized Arctic lakes to climate warming has increased over the last ~30 years. However, until recently, little was known about even the basic limnological conditions of Canada's “Northern Great Lakes,” such as Lake Hazen, Great Bear Lake, and Great Slave Lake. In this summary, we show that a continuum of algal changes, observable in the sedimentary archives of shallow ponds to very large Arctic lakes, signals the crossing of key aquatic thresholds linked to changing ice covers and thermal regimes, declining wind speeds, and other climate-related variables. With recent accelerated warming, even the largest and most resilient Arctic waterbodies are now fundamentally different than they were just a few decades ago. These changes will undoubtedly cascade throughout the food web leading to important changes for local Indigenous populations as well as the global community.
{"title":"From Arctic ponds to the “Northern Great Lakes”: Algae as first responders of climate-driven regime shifts","authors":"John P. Smol, Kathleen M. Rühland, Neal Michelutti, Marlene S. Evans","doi":"10.1111/jpy.13494","DOIUrl":"10.1111/jpy.13494","url":null,"abstract":"<p>Arctic freshwater ecosystems are on the “frontline” of climate change, but due to a lack of direct long-term monitoring data, indirect approaches, such as algal-based paleolimnology, must be used to reconstruct past limnological conditions. Our understanding of the responses of small- to mid-sized Arctic lakes to climate warming has increased over the last ~30 years. However, until recently, little was known about even the basic limnological conditions of Canada's “Northern Great Lakes,” such as Lake Hazen, Great Bear Lake, and Great Slave Lake. In this summary, we show that a continuum of algal changes, observable in the sedimentary archives of shallow ponds to very large Arctic lakes, signals the crossing of key aquatic thresholds linked to changing ice covers and thermal regimes, declining wind speeds, and other climate-related variables. With recent accelerated warming, even the largest and most resilient Arctic waterbodies are now fundamentally different than they were just a few decades ago. These changes will undoubtedly cascade throughout the food web leading to important changes for local Indigenous populations as well as the global community.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chelsea D. Villanueva, Markéta Bohunická, Jeffrey R. Johansen
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S–23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1′ Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1′ Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
全基因组测序在细菌分类学中的迅速发展揭示了深层次的进化关系和物种分化信号,但组装方法往往会遗漏核糖体操作子中真正的核苷酸多样性。虽然 16S 核糖体 RNA 基因在物种水平上缺乏足够的系统发生学信号,但在细菌分类学中仍被广泛使用。在蓝藻分类学中,16S-23S 内部转录间隔区(ITS)的比较被用来弥补这一信息差距。尽管 ITS rRNA 区域分析已被常规用于识别物种,但研究人员往往没有识别出直系操作子,从而导致了不恰当的比较。目前还没有确定从旁系拷贝中划分出直系操作子拷贝的方法。通过量化 ITS 螺旋结构域中的保守成对核苷酸,我们开发出了一种识别直向核糖体操作子的新方法。D1' 指数量化了该螺旋中成对核苷酸序列中嘧啶与嘌呤比例的差异。通过比较来自 89 株巴西龙藻的 111 个操作子序列,发现了四种同源操作子类型。将 D1'指数值与螺旋的长度作图,可明显区分出直向异构体。在这项研究中,无论是存在还是不存在 tRNA 基因,都能观察到大多数同源操作子。我们推测是基因组重排而不是基因复制导致了直向同源物之间的差异。这种新方法将使蓝藻分类学家能够更正确地利用 ITS rRNA 区域数据,从而避免错误的分类假设。此外,这项工作还有助于基因组学家识别和保存核糖体操作子中明显的序列变异,这是原核生物进化的重要标志。
{"title":"We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy","authors":"Chelsea D. Villanueva, Markéta Bohunická, Jeffrey R. Johansen","doi":"10.1111/jpy.13491","DOIUrl":"10.1111/jpy.13491","url":null,"abstract":"<p>The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S–23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1′ Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of <i>Brasilonema</i>, four orthologous operon types were identified. Plotting D1′ Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eloise Bennett, Ellie R. Paine, Mark Hovenden, Gregory Smith, Quinn Fitzgibbon, Catriona L. Hurd
Dissolved organic carbon (DOC) released by macroalgae supports coastal ocean carbon cycling and contributes to the total oceanic DOC pool. Salinity fluctuates substantially in coastal marine environments due to natural and anthropogenic factors, yet there is limited research on how salinity affects DOC release by ecologically important macroalgae. Here we determined the effect of short-term salinity changes on rates of DOC release by the habitat-forming fucalean seaweed Sargassum fallax (Ochrophyta). Lateral branches (~4 g) cut at the axes of mature individuals were incubated across a salinity gradient (4–46) for 24 h under a 12:12 light:dark cycle, and seawater was sampled for DOC at 0, 12, and 24 h. Physiological assays (tissue water content, net photosynthesis, respiration, tissue carbon, and nitrogen content) were undertaken at the end of the 24-h experiment. Dissolved organic carbon release increased with decreasing salinity while net photosynthesis decreased. Dissolved organic carbon release rates at the lowest salinity tested (4) were ~3.3 times greater in the light than in the dark, indicating two potential DOC release mechanisms: light-mediated active exudation and passive release linked to osmotic stress. Tissue water content decreased with increasing salinity. These results demonstrate that hyposalinity stress alters the osmotic status of S. fallax, reducing photosynthesis and increasing DOC release. This has important implications for understanding how salinity conditions encountered by macroalgae may affect their contribution to the coastal ocean carbon cycle.
{"title":"Short-term hyposalinity stress increases dissolved organic carbon (DOC) release by the macroalga Sargassum fallax (Ochrophyta)","authors":"Eloise Bennett, Ellie R. Paine, Mark Hovenden, Gregory Smith, Quinn Fitzgibbon, Catriona L. Hurd","doi":"10.1111/jpy.13492","DOIUrl":"10.1111/jpy.13492","url":null,"abstract":"<p>Dissolved organic carbon (DOC) released by macroalgae supports coastal ocean carbon cycling and contributes to the total oceanic DOC pool. Salinity fluctuates substantially in coastal marine environments due to natural and anthropogenic factors, yet there is limited research on how salinity affects DOC release by ecologically important macroalgae. Here we determined the effect of short-term salinity changes on rates of DOC release by the habitat-forming fucalean seaweed <i>Sargassum fallax</i> (Ochrophyta). Lateral branches (~4 g) cut at the axes of mature individuals were incubated across a salinity gradient (4–46) for 24 h under a 12:12 light:dark cycle, and seawater was sampled for DOC at 0, 12, and 24 h. Physiological assays (tissue water content, net photosynthesis, respiration, tissue carbon, and nitrogen content) were undertaken at the end of the 24-h experiment. Dissolved organic carbon release increased with decreasing salinity while net photosynthesis decreased. Dissolved organic carbon release rates at the lowest salinity tested (4) were ~3.3 times greater in the light than in the dark, indicating two potential DOC release mechanisms: light-mediated active exudation and passive release linked to osmotic stress. Tissue water content decreased with increasing salinity. These results demonstrate that hyposalinity stress alters the osmotic status of <i>S. fallax</i>, reducing photosynthesis and increasing DOC release. This has important implications for understanding how salinity conditions encountered by macroalgae may affect their contribution to the coastal ocean carbon cycle.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haematococcus pluvialis has been used to produce the ketocarotenoid antioxidant, astaxanthin. Currently, heterotrophic cultivation of H. pluvialis is limited by slow growth rates. This work aimed to address this challenge by exploring the mechanisms of acetate metabolism in Haematococcus. Chemical mutagenesis and screening identified H. pluvialis strain KREMS 23D-3 that achieved up to a 34.9% higher cell density than the wild type when grown heterotrophically on acetate. An integrative proteomics and phosphoproteomics approach was employed to quantify 4955 proteins and 5099 phosphorylation sites from 2505 phosphoproteins in the wild-type and mutant strains of H. pluvialis. Among them, 12 proteins were significantly upregulated and 22 significantly downregulated in the mutant while phosphoproteomic analysis identified 143 significantly upregulated phosphorylation sites on 106 proteins and 130 downregulated phosphorylation sites on 114 proteins. Upregulation of anaphase-promoting complex phosphoproteins and downregulation of a putative cell cycle division 20 phosphoprotein in the mutant suggests rapid mitotic progression, coinciding with higher cell division rates. Upregulated coproporphyrinogen oxidase and phosphorylated magnesium chelatase in the mutant demonstrated altered nitrogen partitioning toward chlorophyll biosynthesis. The large proportion of differentially expressed phosphoproteins suggests phosphorylation is a key regulator for protein expression and activity in Haematococcus. Taken together, this study reveals the regulation of interrelated acetate metabolic pathways in H. pluvialis and provides protein targets that may guide future strain engineering work.
{"title":"Proteomic and phosphoproteomic analysis of a Haematococcus pluvialis (Chlorophyceae) mutant with a higher heterotrophic cell division rate reveals altered pathways involved in cell proliferation and nutrient partitioning","authors":"Kyarii Ramarui, Jun Zhong, Yantao Li","doi":"10.1111/jpy.13490","DOIUrl":"10.1111/jpy.13490","url":null,"abstract":"<p><i>Haematococcus pluvialis</i> has been used to produce the ketocarotenoid antioxidant, astaxanthin. Currently, heterotrophic cultivation of <i>H. pluvialis</i> is limited by slow growth rates. This work aimed to address this challenge by exploring the mechanisms of acetate metabolism in <i>Haematococcus</i>. Chemical mutagenesis and screening identified <i>H. pluvialis</i> strain KREMS 23D-3 that achieved up to a 34.9% higher cell density than the wild type when grown heterotrophically on acetate. An integrative proteomics and phosphoproteomics approach was employed to quantify 4955 proteins and 5099 phosphorylation sites from 2505 phosphoproteins in the wild-type and mutant strains of <i>H. pluvialis</i>. Among them, 12 proteins were significantly upregulated and 22 significantly downregulated in the mutant while phosphoproteomic analysis identified 143 significantly upregulated phosphorylation sites on 106 proteins and 130 downregulated phosphorylation sites on 114 proteins. Upregulation of anaphase-promoting complex phosphoproteins and downregulation of a putative cell cycle division 20 phosphoprotein in the mutant suggests rapid mitotic progression, coinciding with higher cell division rates. Upregulated coproporphyrinogen oxidase and phosphorylated magnesium chelatase in the mutant demonstrated altered nitrogen partitioning toward chlorophyll biosynthesis. The large proportion of differentially expressed phosphoproteins suggests phosphorylation is a key regulator for protein expression and activity in <i>Haematococcus</i>. Taken together, this study reveals the regulation of interrelated acetate metabolic pathways in <i>H. pluvialis</i> and provides protein targets that may guide future strain engineering work.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two new species of Dulcicalothrix, D. adhikaryi sp. nov. and D. iyengarii sp. nov., were discovered in India and are characterized and described in accordance with the rules of the International Code of Nomenclature for algae, fungi, and plants (ICN). As a result of phylogenetic analysis, Calothrix elsteri is reassigned to Brunnivagina gen. nov. During comparison with all Dulcicalothrix for which sequence data were available, we observed that the genus has six ribosomal operons in three orthologous types. Each of the three orthologs could be identified based upon indels occurring in the D1–D1′ helix sequence in the ITS rRNA region between the 16S and 23S rRNA genes, and in these three types, there were operons containing ITS rRNA regions with and without tRNA genes. Examination of complete genomes in Dulcicalothrix revealed that, at least in the three strains for which complete genomes are available, there are five ribosomal operons, two with tRNA genes and three with no tRNA genes in the ITS rRNA region. Internal transcribed spacer rRNA regions have been consistently used to differentiate species, both on the basis of secondary structure and percent dissimilarity. Our findings call into question the use of ITS rRNA regions to differentiate species in the absence of efforts to obtain multiple operons of the ITS rRNA region through cloning or targeted PCR amplicons. The ITS rRNA region data for Dulcicalothrix is woefully incomplete, but we provide herein a means for dealing with incomplete data using the polyphasic approach to analyze diverse molecular character sets. Caution is urged in using ITS rRNA data, but a way forward through the complexity is also proposed.
D. adhikaryi sp. nov. 和 D. iyengarii sp. nov. 这两个 Dulcicalothrix 新种是在印度发现的,根据《藻类、真菌和植物国际命名法》(ICN)的规则对其进行了特征描述。经过系统进化分析,Calothrix elsteri 被重新归入 Brunnivagina gen.在与有序列数据的所有 Dulcicalothrix 进行比较时,我们观察到该属有三个直向型的六个核糖体操作子。根据 16S 和 23S rRNA 基因之间 ITS rRNA 区域 D1-D1' 螺旋序列中出现的吲哚,可以确定这三种直向类型中的每一种,在这三种类型中,有的操作子包含 ITS rRNA 区域,有的不包含 tRNA 基因。对 Dulcicalothrix 完整基因组的研究表明,至少在有完整基因组的三个菌株中,有五个核糖体操作子,其中两个含有 tRNA 基因,三个在 ITS rRNA 区域没有 tRNA 基因。内部转录间隔 rRNA 区域一直被用来根据二级结构和差异百分比区分物种。在没有通过克隆或有针对性的 PCR 扩增子获得 ITS rRNA 区域的多个操作子的情况下,我们的发现对使用 ITS rRNA 区域来区分物种提出了质疑。Dulcicalothrix 的 ITS rRNA 区域数据非常不完整,但我们在此提供了一种处理不完整数据的方法,使用多相法分析不同的分子特征集。我们敦促在使用 ITS rRNA 数据时要谨慎,但也提出了克服复杂性的方法。
{"title":"Two new species of Dulcicalothrix (Nostocales, Cyanobacteria) from India and erection of Brunnivagina gen. nov., with observations on the problem of using multiple ribosomal operons in cyanobacterial taxonomy","authors":"Aniket Saraf, Prashant Singh, Naresh Kumar, Sagarika Pal, Jeffrey R. Johansen","doi":"10.1111/jpy.13488","DOIUrl":"10.1111/jpy.13488","url":null,"abstract":"<p>Two new species of <i>Dulcicalothrix, D. adhikaryi</i> sp. nov. and <i>D. iyengarii</i> sp. nov., were discovered in India and are characterized and described in accordance with the rules of the International Code of Nomenclature for algae, fungi, and plants (ICN). As a result of phylogenetic analysis, <i>Calothrix elsteri</i> is reassigned to <i>Brunnivagina</i> gen. nov. During comparison with all <i>Dulcicalothrix</i> for which sequence data were available, we observed that the genus has six ribosomal operons in three orthologous types. Each of the three orthologs could be identified based upon indels occurring in the D1–D1′ helix sequence in the ITS rRNA region between the 16S and 23S rRNA genes, and in these three types, there were operons containing ITS rRNA regions with and without tRNA genes. Examination of complete genomes in <i>Dulcicalothrix</i> revealed that, at least in the three strains for which complete genomes are available, there are five ribosomal operons, two with tRNA genes and three with no tRNA genes in the ITS rRNA region. Internal transcribed spacer rRNA regions have been consistently used to differentiate species, both on the basis of secondary structure and percent dissimilarity. Our findings call into question the use of ITS rRNA regions to differentiate species in the absence of efforts to obtain multiple operons of the ITS rRNA region through cloning or targeted PCR amplicons. The ITS rRNA region data for <i>Dulcicalothrix</i> is woefully incomplete, but we provide herein a means for dealing with incomplete data using the polyphasic approach to analyze diverse molecular character sets. Caution is urged in using ITS rRNA data, but a way forward through the complexity is also proposed.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. J. Veenhof, M. A. Coleman, C. Champion, S. A. Dworjanyn, R. Venhuizen, L. Kearns, E. M. Marzinelli, A. K. Pettersen
Understanding how macroalgal forests will respond to environmental change is critical for predicting future impacts on coastal ecosystems. Although measures of adult macroalgae physiological responses to environmental stress are advancing, measures of early life-stage physiology are rare, in part due to the methodological difficulties associated with their small size. Here we tested a novel, high-throughput method (rate of oxygen consumption and production;