Pub Date : 2024-02-08DOI: 10.1186/s12576-024-00902-x
Lin Li, Xiangdeng Lai, Yihan Ni, Siyu Chen, Yaqian Qu, Zhiqiang Hu, Jingquan Sun
The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.
{"title":"The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.","authors":"Lin Li, Xiangdeng Lai, Yihan Ni, Siyu Chen, Yaqian Qu, Zhiqiang Hu, Jingquan Sun","doi":"10.1186/s12576-024-00902-x","DOIUrl":"10.1186/s12576-024-00902-x","url":null,"abstract":"<p><p>The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"8"},"PeriodicalIF":2.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood. The Thermal Gradient Ring is a new apparatus that allows mice to freely move around the ring floor and not stay in a corner. The system can analyze various factors (e.g., 'Spent time', 'Travel distance', 'Moving speed', 'Acceleration') associated with temperature-dependent behaviors of TRP-deficient mice. For example, the Ring system clearly discriminated differences in temperature-dependent phenotypes between mice with diabetic peripheral neuropathy and TRPV1-/- mice, and demonstrated the importance of TRPV3 in temperature detection in skin. Studies using the Thermal Gradient Ring system can increase understanding of the molecular basis of thermal behaviors in mice and in turn help develop strategies to affect responses to different temperature conditions in humans.
{"title":"Thermal gradient ring for analysis of temperature-dependent behaviors involving TRP channels in mice.","authors":"Tomoyo Ujisawa, Jing Lei, Makiko Kashio, Makoto Tominaga","doi":"10.1186/s12576-024-00903-w","DOIUrl":"10.1186/s12576-024-00903-w","url":null,"abstract":"<p><p>There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood. The Thermal Gradient Ring is a new apparatus that allows mice to freely move around the ring floor and not stay in a corner. The system can analyze various factors (e.g., 'Spent time', 'Travel distance', 'Moving speed', 'Acceleration') associated with temperature-dependent behaviors of TRP-deficient mice. For example, the Ring system clearly discriminated differences in temperature-dependent phenotypes between mice with diabetic peripheral neuropathy and TRPV1<sup>-/-</sup> mice, and demonstrated the importance of TRPV3 in temperature detection in skin. Studies using the Thermal Gradient Ring system can increase understanding of the molecular basis of thermal behaviors in mice and in turn help develop strategies to affect responses to different temperature conditions in humans.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"9"},"PeriodicalIF":2.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1186/s12576-024-00900-z
Aya E H Hamed, Sherif Khedr, Elsayed Ghonamy, Faten A Mahmoud, Mona A Ahmed
Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.
{"title":"Impact of folic acid supplementation on ischemia‒reperfusion-induced kidney injury in rats: folic acid prophylactic role revisited.","authors":"Aya E H Hamed, Sherif Khedr, Elsayed Ghonamy, Faten A Mahmoud, Mona A Ahmed","doi":"10.1186/s12576-024-00900-z","DOIUrl":"10.1186/s12576-024-00900-z","url":null,"abstract":"<p><p>Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"7"},"PeriodicalIF":2.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1186/s12576-023-00896-y
Kazue Mizumura, Toru Taguchi
We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold (MMWT) decreased 1-3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. The B2 bradykinin receptor-nerve growth factor (NGF) route and COX-2-glial cell line-derived neurotrophic factor (GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treatment of DOMS.
{"title":"Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness.","authors":"Kazue Mizumura, Toru Taguchi","doi":"10.1186/s12576-023-00896-y","DOIUrl":"10.1186/s12576-023-00896-y","url":null,"abstract":"<p><p>We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold (MMWT) decreased 1-3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. The B2 bradykinin receptor-nerve growth factor (NGF) route and COX-2-glial cell line-derived neurotrophic factor (GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treatment of DOMS.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"4"},"PeriodicalIF":2.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1186/s12576-023-00897-x
Yasunobu Okada
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.
{"title":"Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification.","authors":"Yasunobu Okada","doi":"10.1186/s12576-023-00897-x","DOIUrl":"10.1186/s12576-023-00897-x","url":null,"abstract":"<p><p>The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"3"},"PeriodicalIF":2.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In humans, uric acid is an end-product of purine metabolism. Urate excretion from the human kidney is tightly regulated by reabsorption and secretion. At least eleven genes have been identified as human renal urate transporters. However, it remains unclear whether all renal tubular cells express the same set of urate transporters. Here, we show renal tubular cells are divided into three distinct cell populations for urate handling. Analysis of healthy human kidneys at single-cell resolution revealed that not all tubular cells expressed the same set of urate transporters. Only 32% of tubular cells were related to both reabsorption and secretion, while the remaining tubular cells were related to either reabsorption or secretion at 5% and 63%, respectively. These results provide physiological insight into the molecular function of the transporters and renal urate handling on single-cell units. Our findings suggest that three different cell populations cooperate to regulate urate excretion from the human kidney, and our proposed framework is a step forward in broadening the view from the molecular to the cellular level of transport capacity.
{"title":"Identification of three distinct cell populations for urate excretion in human kidneys.","authors":"Yoshihiko M Sakaguchi, Pattama Wiriyasermkul, Masaya Matsubayashi, Masaki Miyasaka, Nau Sakaguchi, Yoshiki Sahara, Minoru Takasato, Kaoru Kinugawa, Kazuma Sugie, Masahiro Eriguchi, Kazuhiko Tsuruya, Hiroki Kuniyasu, Shushi Nagamori, Eiichiro Mori","doi":"10.1186/s12576-023-00894-0","DOIUrl":"10.1186/s12576-023-00894-0","url":null,"abstract":"<p><p>In humans, uric acid is an end-product of purine metabolism. Urate excretion from the human kidney is tightly regulated by reabsorption and secretion. At least eleven genes have been identified as human renal urate transporters. However, it remains unclear whether all renal tubular cells express the same set of urate transporters. Here, we show renal tubular cells are divided into three distinct cell populations for urate handling. Analysis of healthy human kidneys at single-cell resolution revealed that not all tubular cells expressed the same set of urate transporters. Only 32% of tubular cells were related to both reabsorption and secretion, while the remaining tubular cells were related to either reabsorption or secretion at 5% and 63%, respectively. These results provide physiological insight into the molecular function of the transporters and renal urate handling on single-cell units. Our findings suggest that three different cell populations cooperate to regulate urate excretion from the human kidney, and our proposed framework is a step forward in broadening the view from the molecular to the cellular level of transport capacity.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"1"},"PeriodicalIF":2.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Establishing specific reference intervals (RIs) of serum 25-hydroxyvitamin D3 [25(OH)D] for children is essential for improving the accuracy of diagnosis and prognosis monitoring of diseases such as rickets and growth retardation. The study including 6,627 healthy children was conducted to establish specific RIs of 25(OH)D for children in Nanning area of China. The results showed that there were statistically significant differences among age, season, and gender of serum 25(OH)D levels, and the age-specific RIs of serum 25(OH)D were 20.3 ~ 53.6 ng/mL for 0 ~ ≤ 1 year and 18.9 ~ 49.6 ng/mL for 2 ~ ≤ 3 years. The age-, season-specific RIs of serum 25(OH)D for 4 ~ ≤ 6 years in spring-summer and autumn-winter were 15.8 ~ 42.6 ng/mL and 15.2 ~ 37.7 ng/mL, respectively. The age-, gender-specific RIs of serum 25(OH)D for 7 ~ ≤ 18 years for males and females were 12.1 ~ 36.1 ng/mL and 10.8 ~ 35.3 ng/mL, respectively. This study successfully established the RIs of serum 25(OH)D, which may help to improve disease diagnosis and monitoring for children in the Nanning area of China.
{"title":"Age-, season- and gender-specific reference intervals of serum 25-hydroxyvitamin D<sub>3</sub> for healthy children (0 ~ 18 years old) in Nanning area of China.","authors":"Dong-Yi Zhou, Shang-Mou Wei, Chun-Ling Zhu, Yu-Hong Wei, Xiao-Mei Wang, Li-Ling Yi, Si-Tao Yang, Qi-Liu Peng","doi":"10.1186/s12576-023-00895-z","DOIUrl":"10.1186/s12576-023-00895-z","url":null,"abstract":"<p><p>Establishing specific reference intervals (RIs) of serum 25-hydroxyvitamin D3 [25(OH)D] for children is essential for improving the accuracy of diagnosis and prognosis monitoring of diseases such as rickets and growth retardation. The study including 6,627 healthy children was conducted to establish specific RIs of 25(OH)D for children in Nanning area of China. The results showed that there were statistically significant differences among age, season, and gender of serum 25(OH)D levels, and the age-specific RIs of serum 25(OH)D were 20.3 ~ 53.6 ng/mL for 0 ~ ≤ 1 year and 18.9 ~ 49.6 ng/mL for 2 ~ ≤ 3 years. The age-, season-specific RIs of serum 25(OH)D for 4 ~ ≤ 6 years in spring-summer and autumn-winter were 15.8 ~ 42.6 ng/mL and 15.2 ~ 37.7 ng/mL, respectively. The age-, gender-specific RIs of serum 25(OH)D for 7 ~ ≤ 18 years for males and females were 12.1 ~ 36.1 ng/mL and 10.8 ~ 35.3 ng/mL, respectively. This study successfully established the RIs of serum 25(OH)D, which may help to improve disease diagnosis and monitoring for children in the Nanning area of China.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"2"},"PeriodicalIF":2.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2025-01-02DOI: 10.1186/s12576-024-00900-z
Aya E H Hamed, Sherif Khedr, Elsayed Ghonamy, Faten A Mahmoud, Mona A Ahmed
Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.
{"title":"Impact of folic acid supplementation on ischemia‒reperfusion-induced kidney injury in rats: folic acid prophylactic role revisited.","authors":"Aya E H Hamed, Sherif Khedr, Elsayed Ghonamy, Faten A Mahmoud, Mona A Ahmed","doi":"10.1186/s12576-024-00900-z","DOIUrl":"https://doi.org/10.1186/s12576-024-00900-z","url":null,"abstract":"<p><p>Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"7"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Establishing specific reference intervals (RIs) of serum 25-hydroxyvitamin D3 [25(OH)D] for children is essential for improving the accuracy of diagnosis and prognosis monitoring of diseases such as rickets and growth retardation. The study including 6,627 healthy children was conducted to establish specific RIs of 25(OH)D for children in Nanning area of China. The results showed that there were statistically significant differences among age, season, and gender of serum 25(OH)D levels, and the age-specific RIs of serum 25(OH)D were 20.3 ~ 53.6 ng/mL for 0 ~ ≤ 1 year and 18.9 ~ 49.6 ng/mL for 2 ~ ≤ 3 years. The age-, season-specific RIs of serum 25(OH)D for 4 ~ ≤ 6 years in spring-summer and autumn-winter were 15.8 ~ 42.6 ng/mL and 15.2 ~ 37.7 ng/mL, respectively. The age-, gender-specific RIs of serum 25(OH)D for 7 ~ ≤ 18 years for males and females were 12.1 ~ 36.1 ng/mL and 10.8 ~ 35.3 ng/mL, respectively. This study successfully established the RIs of serum 25(OH)D, which may help to improve disease diagnosis and monitoring for children in the Nanning area of China.
{"title":"Age-, season- and gender-specific reference intervals of serum 25-hydroxyvitamin D<sub>3</sub> for healthy children (0 ~ 18 years old) in Nanning area of China.","authors":"Dong-Yi Zhou, Shang-Mou Wei, Chun-Ling Zhu, Yu-Hong Wei, Xiao-Mei Wang, Li-Ling Yi, Si-Tao Yang, Qi-Liu Peng","doi":"10.1186/s12576-023-00895-z","DOIUrl":"https://doi.org/10.1186/s12576-023-00895-z","url":null,"abstract":"<p><p>Establishing specific reference intervals (RIs) of serum 25-hydroxyvitamin D3 [25(OH)D] for children is essential for improving the accuracy of diagnosis and prognosis monitoring of diseases such as rickets and growth retardation. The study including 6,627 healthy children was conducted to establish specific RIs of 25(OH)D for children in Nanning area of China. The results showed that there were statistically significant differences among age, season, and gender of serum 25(OH)D levels, and the age-specific RIs of serum 25(OH)D were 20.3 ~ 53.6 ng/mL for 0 ~ ≤ 1 year and 18.9 ~ 49.6 ng/mL for 2 ~ ≤ 3 years. The age-, season-specific RIs of serum 25(OH)D for 4 ~ ≤ 6 years in spring-summer and autumn-winter were 15.8 ~ 42.6 ng/mL and 15.2 ~ 37.7 ng/mL, respectively. The age-, gender-specific RIs of serum 25(OH)D for 7 ~ ≤ 18 years for males and females were 12.1 ~ 36.1 ng/mL and 10.8 ~ 35.3 ng/mL, respectively. This study successfully established the RIs of serum 25(OH)D, which may help to improve disease diagnosis and monitoring for children in the Nanning area of China.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"2"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2025-01-02DOI: 10.1186/s12576-024-00931-6
Keitaro Satoh, Yuta Ohno, Haruna Nagase, Masanori Kashimata, Kazunori Adachi
This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.
{"title":"Age-related alteration of the involvement of CD36 for salivary secretion from the parotid gland in mice.","authors":"Keitaro Satoh, Yuta Ohno, Haruna Nagase, Masanori Kashimata, Kazunori Adachi","doi":"10.1186/s12576-024-00931-6","DOIUrl":"https://doi.org/10.1186/s12576-024-00931-6","url":null,"abstract":"<p><p>This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"38"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}