Cytosine-rich DNA sequences can fold into intercalated motifs known as i-motifs, through noncanonical hydrogen bonding interactions. Molecular probes can provide valuable insights into the conformational stability and potential cellular functions of i-motifs. W5K5, a decapeptide composed of alternating tryptophan (W) and lysine (K) units, has been identified as a lead candidate to modulate the structural dynamics of the hypoxia-inducible factor 1-alpha (HIF-1α) DNA i-motif. This finding is expected to facilitate the rational design of peptide-based probes for studying the structure and functional dynamics of i-motifs.
富含胞嘧啶的 DNA 序列可以通过非经典氢键相互作用折叠成被称为 i-motifs 的插层图案。分子探针可以为了解 i-motifs的构象稳定性和潜在的细胞功能提供宝贵的信息。W5K5是一种由色氨酸(W)和赖氨酸(K)单位交替组成的十肽,已被确定为调节缺氧诱导因子1-α(HIF-1α)DNA i-motif结构动态的主要候选物。这一发现有望促进基于多肽的探针的合理设计,以研究i-motifs的结构和功能动态。
{"title":"Designer tryptophan-rich peptide modulates structural dynamics of HIF-1α DNA i-motif DNA","authors":"Debasis Ghosh, Sumon Pratihar, Thimmaiah Govindaraju","doi":"10.1002/psc.3601","DOIUrl":"10.1002/psc.3601","url":null,"abstract":"<p>Cytosine-rich DNA sequences can fold into intercalated motifs known as <i>i</i>-motifs, through noncanonical hydrogen bonding interactions. Molecular probes can provide valuable insights into the conformational stability and potential cellular functions of <i>i</i>-motifs. W<sub>5</sub>K<sub>5</sub>, a decapeptide composed of alternating tryptophan (W) and lysine (K) units, has been identified as a lead candidate to modulate the structural dynamics of the hypoxia-inducible factor 1-alpha (HIF-1α) DNA <i>i</i>-motif. This finding is expected to facilitate the rational design of peptide-based probes for studying the structure and functional dynamics of <i>i</i>-motifs.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Proksch, Marlene C. S. Dal Colle, Frederick Heinz, Robert F. Schmidt, Jacqueline Gottwald, Martina Delbianco, Bettina G. Keller, Michael Gradzielski, Ulrike Alexiev, Beate Koksch
Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.
{"title":"Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels","authors":"Jonas Proksch, Marlene C. S. Dal Colle, Frederick Heinz, Robert F. Schmidt, Jacqueline Gottwald, Martina Delbianco, Bettina G. Keller, Michael Gradzielski, Ulrike Alexiev, Beate Koksch","doi":"10.1002/psc.3599","DOIUrl":"10.1002/psc.3599","url":null,"abstract":"<p>Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.3599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonia D'Aniello, Alessandra Del Bene, Salvatore Mottola, Vincenzo Mazzarella, Roberto Cutolo, Erica Campagna, Salvatore Di Maro, Anna Messere
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
{"title":"The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines","authors":"Antonia D'Aniello, Alessandra Del Bene, Salvatore Mottola, Vincenzo Mazzarella, Roberto Cutolo, Erica Campagna, Salvatore Di Maro, Anna Messere","doi":"10.1002/psc.3596","DOIUrl":"10.1002/psc.3596","url":null,"abstract":"<p>The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extract from the Minutes of the General Assembly of the European Peptide Society of May 12, 2023","authors":"","doi":"10.1002/psc.3588","DOIUrl":"https://doi.org/10.1002/psc.3588","url":null,"abstract":"","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 S1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"10th International Peptide Conference of the Bulgarian Peptide Society","authors":"","doi":"10.1002/psc.3578","DOIUrl":"10.1002/psc.3578","url":null,"abstract":"","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 S1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Giornata Scientifica della Società Italiana Peptidi Dedicata ai Soci Giovani, Vittorio Erspamer and Carlo Pedone Awards 2023","authors":"","doi":"10.1002/psc.3583","DOIUrl":"10.1002/psc.3583","url":null,"abstract":"","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"30 S1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}