首页 > 最新文献

Metamaterials, Metadevices, and Metasystems 2018最新文献

英文 中文
Metasurface flat optics: Unifying semiconductor manufacturing and lens making (Conference Presentation) 超表面平面光学:统一半导体制造和透镜制造(会议报告)
Pub Date : 2018-09-04 DOI: 10.1117/12.2515252
F. Capasso
Metasurfaces provide a new basis for recasting optical components into thin planar elements, easy to optically align and control aberrations, leading to a major reduction in footprint, system complexity and cost as well as the introduction of new optical functions.1, 2, 3. Their planarity allows for fabrication routes directly in line with conventional processes of the mature integrated circuit (IC) industry.1 I foresee great technological and scientific penetration of CMOS compatible metasurface-based optical components, ranging from metalenses4-6 to novel polarization optics7, 8. Camera modules for high volume applications, such as cell phones, will be the greatest beneficiaries. The technology required to mass produce metasurfaces dates back to the early 1990s, when the feature sizes of semiconductor manufacturing became smaller than the wavelength of light, advancing in stride with Moore’s law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make metalenses and other optical components, based on metasurfaces. A major obstacle for this to happen had to be overcome. With metasurfaces, the data describing large designs are faced with the challenge of enormous file sizes due to having millions or billions of individual microscopic metaelements (necessitated by the subwavelength size criterion) described over macroscopically large device areas. This extremely high data density over large areas generates unmanageably large total file sizes, limiting the fabrication of optical components such as metalenses to sizes no larger than a few millimeters. Using our new scalable metasurface layout compression algorithm (METAC) that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we have recently shown the design and fabrication of metalenses with extremely large areas, up to centimeters in diameter and beyond.9 Finally I envision a future of digital optics based on metasurfaces with increased density of optical components and functionalities per metasurface; it is tempting to speculate that an empirical law might govern its growth, akin to Moore’s Law for digital electronics. References: 1. F. Capasso, Nanophotonics DOI: 10.1515/nanoph-2018-0004 (2018) 2. N. Yu et al. Science 334, 333 (2011) 3. N. Yu and F. Capasso Nature Materials 13, 139 (2014) 4. M. Khorasaninejad et al. Science 352, 1190 (2016) 5. M. Khorasaninejad and F. Capasso, Science 358, 8100 (2017) 6. W-T. Chen et al. Nature Nanotechnology (2018) doi:10.1038/s41565-017-0034-6 7. J. P. B. Mueller et al. Physical Review Letters 118, 113901 (2017) 8. J. P. B. Mueller et al. Optica 3, 42 (2016) 9. A. She et al. Optics Express 26, 1573 (2018)
超表面为将光学元件重铸为薄平面元件提供了新的基础,易于光学对准和控制像差,从而大大减少了占地面积,系统复杂性和成本,并引入了新的光学功能。1 2 3。它们的平面性允许制造路线直接符合成熟集成电路(IC)行业的传统工艺我预见到CMOS兼容的基于超表面的光学元件的巨大技术和科学渗透,从超传感器4-6到新型偏振光学7,8。用于大容量应用(如手机)的相机模块将是最大的受益者。大规模生产超表面所需的技术可以追溯到20世纪90年代初,当时半导体制造的特征尺寸小于光的波长,与摩尔定律大步前进。这提供了统一两个行业的可能性:半导体制造和透镜制造,即用于制造计算机芯片的相同技术用于制造基于超表面的超透镜和其他光学元件。实现这一目标的一个主要障碍必须克服。对于元表面,描述大型设计的数据面临着巨大文件大小的挑战,因为在宏观上的大型设备区域上描述了数百万或数十亿个单个微观元元素(由亚波长尺寸标准所必需)。这种大面积的极高数据密度产生了难以管理的大文件大小,限制了光学元件(如超透镜)的制造,其尺寸不超过几毫米。使用我们新的可扩展的超表面布局压缩算法(METAC),该算法可以成倍地减少设计文件的大小(对于直径为厘米的透镜,可以减少3个数量级)和步进光刻技术,我们最近展示了具有极大面积的超透镜的设计和制造,直径可达厘米甚至更大最后,我设想了一个基于元表面的数字光学的未来,增加了光学元件的密度和每个元表面的功能;人们很容易猜测,一种经验法则可能支配着它的增长,就像数字电子学的摩尔定律一样。引用:1。F. Capasso,纳米光子学DOI: 10.1515/nanoph-2018-0004 (2018)N. Yu等人。科学学报,334,333 (2011)刘宁,刘春华,刘春华,等。M. Khorasaninejad等。5.科学通报,2016,(5):481 - 481。6.中国科学:自然科学版,2016,35(5):591 - 591。W-T。Chen等人。Nature Nanotechnology (2018) doi:10.1038/s41565-017-0034-6。J. P. B.穆勒等。8.物理学报,2004,11(4)(2017)。J. P. B.穆勒等。光学学报,2016,42 (2016)A.她等人。光学精密工程,26 (2018)
{"title":"Metasurface flat optics: Unifying semiconductor manufacturing and lens making (Conference Presentation)","authors":"F. Capasso","doi":"10.1117/12.2515252","DOIUrl":"https://doi.org/10.1117/12.2515252","url":null,"abstract":"Metasurfaces provide a new basis for recasting optical components into thin planar elements, easy to optically align and control aberrations, leading to a major reduction in footprint, system complexity and cost as well as the introduction of new optical functions.1, 2, 3. Their planarity allows for fabrication routes directly in line with conventional processes of the mature integrated circuit (IC) industry.1 I foresee great technological and scientific penetration of CMOS compatible metasurface-based optical components, ranging from metalenses4-6 to novel polarization optics7, 8. Camera modules for high volume applications, such as cell phones, will be the greatest beneficiaries. The technology required to mass produce metasurfaces dates back to the early 1990s, when the feature sizes of semiconductor manufacturing became smaller than the wavelength of light, advancing in stride with Moore’s law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make metalenses and other optical components, based on metasurfaces. A major obstacle for this to happen had to be overcome. With metasurfaces, the data describing large designs are faced with the challenge of enormous file sizes due to having millions or billions of individual microscopic metaelements (necessitated by the subwavelength size criterion) described over macroscopically large device areas. This extremely high data density over large areas generates unmanageably large total file sizes, limiting the fabrication of optical components such as metalenses to sizes no larger than a few millimeters. Using our new scalable metasurface layout compression algorithm (METAC) that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we have recently shown the design and fabrication of metalenses with extremely large areas, up to centimeters in diameter and beyond.9 Finally I envision a future of digital optics based on metasurfaces with increased density of optical components and functionalities per metasurface; it is tempting to speculate that an empirical law might govern its growth, akin to Moore’s Law for digital electronics. \u0000\u0000References: 1. F. Capasso, Nanophotonics DOI: 10.1515/nanoph-2018-0004 (2018) 2. N. Yu et al. Science 334, 333 (2011) 3. N. Yu and F. Capasso Nature Materials 13, 139 (2014) 4. M. Khorasaninejad et al. Science 352, 1190 (2016) 5. M. Khorasaninejad and F. Capasso, Science 358, 8100 (2017) 6. W-T. Chen et al. Nature Nanotechnology (2018) doi:10.1038/s41565-017-0034-6 7. J. P. B. Mueller et al. Physical Review Letters 118, 113901 (2017) 8. J. P. B. Mueller et al. Optica 3, 42 (2016) 9. A. She et al. Optics Express 26, 1573 (2018)","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132584748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Metamaterials, Metadevices, and Metasystems 2018
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1