首页 > 最新文献

Journal of Statistical Mechanics: Theory and Experiment最新文献

英文 中文
Siegmund duality for physicists: a bridge between spatial and first-passage properties of continuous- and discrete-time stochastic processes 物理学家的西格蒙德二元性:连续时间和离散时间随机过程的空间特性与首过特性之间的桥梁
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-09-03 DOI: 10.1088/1742-5468/ad6134
Mathis Guéneau, Léo Touzo
We consider a generic one-dimensional stochastic process <italic toggle="yes">x</italic>(<italic toggle="yes">t</italic>), or a random walk <italic toggle="yes">X<sub>n</sub></italic>, which describes the position of a particle evolving inside an interval <inline-formula><tex-math><?CDATA $[a,b]$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6134ieqn1.gif"></inline-graphic></inline-formula>, with absorbing walls located at <italic toggle="yes">a</italic> and <italic toggle="yes">b</italic>. In continuous time, <italic toggle="yes">x</italic>(<italic toggle="yes">t</italic>) is driven by some equilibrium process <inline-formula><tex-math><?CDATA ${boldsymbol theta}(t)$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">θ</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6134ieqn2.gif"></inline-graphic></inline-formula>, while in discrete time, the jumps of <italic toggle="yes">X<sub>n</sub></italic> follow a stationary process that obeys a time-reversal property. An important observable to characterize its behavior is the exit probability <inline-formula><tex-math><?CDATA $E_b(x,t)$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi>b</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6134ieqn3.gif"></inline-graphic></inline-formula>, which is the probability for the particle to be absorbed first at the wall <italic toggle="yes">b</italic>, before or at time <italic toggle="yes">t</italic>, given its initial position <italic toggle="yes">x</italic>. In this paper we show that the derivation of this quantity can be tackled by studying a dual process <italic toggle="yes">y</italic>(<italic toggle="yes">t</italic>) very similar to <italic toggle="yes">x</italic>(<italic toggle="yes">t</italic>) but with hard walls at <italic toggle="yes">a</italic> and <italic toggle="yes">b</italic>. More precisely, we show that the quantity <inline-formula><tex-math><?CDATA $E_b(x,t)$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi>b</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6134ieqn4.gif"></inline-graphic></inline-formula> for the process <italic toggle="yes">x</italic>(<italic toggle="yes">t</italic>) is equal to the probability <inline-formula><tex-math><?CDATA $tilde Phi(x,t|b)$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:mover
我们考虑一个通用的一维随机过程 x(t)或随机游走 Xn,它描述了一个粒子在区间 [a,b] 内演化的位置,吸收墙位于 a 和 b 处。在连续时间内,x(t) 由某个均衡过程 θ(t) 驱动,而在离散时间内,Xn 的跳跃遵循一个服从时间反转特性的静止过程。描述其行为特征的一个重要观测指标是出口概率 Eb(x,t),即粒子在给定其初始位置 x 的情况下,在时间 t 之前或 t 时首先被壁 b 吸收的概率。在本文中,我们将展示如何通过研究与 x(t) 非常相似但在 a 和 b 处有硬壁的对偶过程 y(t) 来解决这个问题。更准确地说,我们将展示过程 x(t) 的 Eb(x,t) 等价于在时间 t 在区间 [a,x] 内找到对偶过程的概率 Φ~(x,t|b),其中 y(0)=b 。这在数学中被称为西格蒙德对偶性。在这里,我们将证明这种对偶性适用于物理学中各种令人感兴趣的过程,包括活动粒子模型、扩散弥散模型、一大类离散和连续时间随机漫步,甚至是受随机重置影响的过程。对于所有这些情况,我们都提供了对偶过程的明确构造。我们还给出了连续和离散时间背景下这一特性的简单推导,以及大量相关模型的数值检验。最后,我们通过模拟来证明,对于更复杂的过程,如分数布朗运动,对偶性也可能成立。
{"title":"Siegmund duality for physicists: a bridge between spatial and first-passage properties of continuous- and discrete-time stochastic processes","authors":"Mathis Guéneau, Léo Touzo","doi":"10.1088/1742-5468/ad6134","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6134","url":null,"abstract":"We consider a generic one-dimensional stochastic process &lt;italic toggle=\"yes\"&gt;x&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;), or a random walk &lt;italic toggle=\"yes\"&gt;X&lt;sub&gt;n&lt;/sub&gt;&lt;/italic&gt;, which describes the position of a particle evolving inside an interval &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $[a,b]$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mi&gt;a&lt;/mml:mi&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;b&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6134ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, with absorbing walls located at &lt;italic toggle=\"yes\"&gt;a&lt;/italic&gt; and &lt;italic toggle=\"yes\"&gt;b&lt;/italic&gt;. In continuous time, &lt;italic toggle=\"yes\"&gt;x&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;) is driven by some equilibrium process &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${boldsymbol theta}(t)$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;θ&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6134ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, while in discrete time, the jumps of &lt;italic toggle=\"yes\"&gt;X&lt;sub&gt;n&lt;/sub&gt;&lt;/italic&gt; follow a stationary process that obeys a time-reversal property. An important observable to characterize its behavior is the exit probability &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $E_b(x,t)$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;E&lt;/mml:mi&gt;&lt;mml:mi&gt;b&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6134ieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, which is the probability for the particle to be absorbed first at the wall &lt;italic toggle=\"yes\"&gt;b&lt;/italic&gt;, before or at time &lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;, given its initial position &lt;italic toggle=\"yes\"&gt;x&lt;/italic&gt;. In this paper we show that the derivation of this quantity can be tackled by studying a dual process &lt;italic toggle=\"yes\"&gt;y&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;) very similar to &lt;italic toggle=\"yes\"&gt;x&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;) but with hard walls at &lt;italic toggle=\"yes\"&gt;a&lt;/italic&gt; and &lt;italic toggle=\"yes\"&gt;b&lt;/italic&gt;. More precisely, we show that the quantity &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $E_b(x,t)$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;E&lt;/mml:mi&gt;&lt;mml:mi&gt;b&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6134ieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; for the process &lt;italic toggle=\"yes\"&gt;x&lt;/italic&gt;(&lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;) is equal to the probability &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $tilde Phi(x,t|b)$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mover","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"28 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic thermodynamics of micromagnetics with spin torque 带有自旋扭矩的微磁随机热力学
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-30 DOI: 10.1088/1742-5468/ad6c2d
Mingnan Ding, Jun Wu, Xiangjun Xing
In this work, we study the stochastic dynamics of micro-magnetics interacting with a spin-current torque. We extend the previously constructed stochastic Landau–Lifshitz equation to the case with spin-current torque, and verify the conditions of detailed balance. Then we construct various thermodynamics quantities such as work and heat, and prove the second law of thermodynamics. Due to the existence of spin-torque and the asymmetry of the kinetic matrix, a novel effect of entropy pumping shows up. As a consequence, the system may behave as a heat engine which constantly transforms heat into magnetic work. Finally, we derive a fluctuation theorem for the joint probability density function of the pumped entropy and the total work, and verify it using numerical simulations.
在这项工作中,我们研究了与自旋电流力矩相互作用的微磁场的随机动力学。我们将之前构建的随机 Landau-Lifshitz 方程扩展到有自旋电流力矩的情况,并验证了详细平衡条件。然后,我们构建了各种热力学量,如功和热,并证明了热力学第二定律。由于自旋力矩的存在和动力学矩阵的不对称性,一种新的熵泵效应显现出来。因此,该系统可以像热引擎一样不断地将热量转化为磁功。最后,我们推导出了泵送熵和总功的联合概率密度函数的波动定理,并通过数值模拟进行了验证。
{"title":"Stochastic thermodynamics of micromagnetics with spin torque","authors":"Mingnan Ding, Jun Wu, Xiangjun Xing","doi":"10.1088/1742-5468/ad6c2d","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6c2d","url":null,"abstract":"In this work, we study the stochastic dynamics of micro-magnetics interacting with a spin-current torque. We extend the previously constructed stochastic Landau–Lifshitz equation to the case with spin-current torque, and verify the conditions of detailed balance. Then we construct various thermodynamics quantities such as work and heat, and prove the second law of thermodynamics. Due to the existence of spin-torque and the asymmetry of the kinetic matrix, a novel effect of <italic toggle=\"yes\">entropy pumping</italic> shows up. As a consequence, the system may behave as a heat engine which constantly transforms heat into magnetic work. Finally, we derive a fluctuation theorem for the joint probability density function of the pumped entropy and the total work, and verify it using numerical simulations.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"60 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The crossover from a dynamical percolation class to a directed percolation class on a two dimensional lattice 二维网格上从动态渗流类到有向渗流类的交叉
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-30 DOI: 10.1088/1742-5468/ad6975
M Ali Saif
We study the crossover phenomena from the dynamical percolation class (DyP) to the directed percolation class (DP) in the model of disease spreading, susceptible-infected-refractory-susceptible (SIRS) on a two-dimensional lattice. In this model, agents of three species <italic toggle="yes">S</italic>, <italic toggle="yes">I</italic>, and <italic toggle="yes">R</italic> on a lattice react as follows: <inline-formula><tex-math><?CDATA $S+Irightarrow I+I$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>S</mml:mi><mml:mo>+</mml:mo><mml:mi>I</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>I</mml:mi><mml:mo>+</mml:mo><mml:mi>I</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6975ieqn1.gif"></inline-graphic></inline-formula> with probability <italic toggle="yes">λ</italic>, <inline-formula><tex-math><?CDATA $Irightarrow R$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>R</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6975ieqn2.gif"></inline-graphic></inline-formula> after infection time <italic toggle="yes">τ</italic><sub><italic toggle="yes">I</italic></sub> and <inline-formula><tex-math><?CDATA $Rrightarrow I$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi>R</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>I</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6975ieqn3.gif"></inline-graphic></inline-formula> after recovery time <italic toggle="yes">τ</italic><sub><italic toggle="yes">R</italic></sub>. Depending on the value of the parameter <italic toggle="yes">τ</italic><sub><italic toggle="yes">R</italic></sub>, the SIRS model can be reduced to the following two well-known special cases. On the one hand, when <inline-formula><tex-math><?CDATA $tau_R rightarrow 0$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>τ</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mo stretchy="false">→</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6975ieqn4.gif"></inline-graphic></inline-formula>, the SIRS model reduces to the SIS model. On the other hand, when <inline-formula><tex-math><?CDATA $tau_R rightarrow infty$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>τ</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mo stretchy="false">→</mml:mo><mml:mi mathvariant="normal">∞</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6975ieqn5.gif"></inline-graphic></inline-formula> the model reduces to the SIR model. It is known that whereas the SIS model belongs to the DP universality class, the SIR model belongs to the DyP universality class. We can deduce from the model dynamics that SIRS will behave as the SIS model for any finite values of <italic toggle="yes">τ</italic><sub><italic toggle="yes">R</italic></sub>. The model will behave as SIR only when <inline-formula><tex-math><?CDATA $tau_R = infty$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:m
我们研究了二维晶格上疾病传播模型 "易感-感染-难治-易感(SIRS)"中从动态渗流类(DyP)到有向渗流类(DP)的交叉现象。在该模型中,网格上 S、I 和 R 三种病原体的反应如下:S+I→I+I,概率为 λ;感染时间 τI 后,I→R;恢复时间 τR 后,R→I。根据参数 τR 的取值,SIRS 模型可以简化为以下两种众所周知的特殊情况。一方面,当 τR→0 时,SIRS 模型简化为 SIS 模型。另一方面,当 τR→∞ 时,该模型会简化为 SIR 模型。众所周知,SIS 模型属于 DP 普遍性类别,而 SIR 模型属于 DyP 普遍性类别。我们可以从模型动力学推导出,在任何有限的 τR 值下,SIRS 都将表现为 SIS 模型。只有当 τR=∞ 时,模型才会表现为 SIR。通过蒙特卡罗模拟,我们发现只要 τR 是有限的,SIRS 就属于 DP 大学类。我们还研究了相图,并分析了该模型沿临界线的缩放行为。通过数值模拟和分析论证,我们发现从 DyP 到 DP 的交叉可以用交叉指数 1/j=0.67(2) 来描述。
{"title":"The crossover from a dynamical percolation class to a directed percolation class on a two dimensional lattice","authors":"M Ali Saif","doi":"10.1088/1742-5468/ad6975","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6975","url":null,"abstract":"We study the crossover phenomena from the dynamical percolation class (DyP) to the directed percolation class (DP) in the model of disease spreading, susceptible-infected-refractory-susceptible (SIRS) on a two-dimensional lattice. In this model, agents of three species &lt;italic toggle=\"yes\"&gt;S&lt;/italic&gt;, &lt;italic toggle=\"yes\"&gt;I&lt;/italic&gt;, and &lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt; on a lattice react as follows: &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $S+Irightarrow I+I$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;S&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;mml:mi&gt;I&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt;&lt;mml:mi&gt;I&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;mml:mi&gt;I&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6975ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; with probability &lt;italic toggle=\"yes\"&gt;λ&lt;/italic&gt;, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $Irightarrow R$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;I&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6975ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; after infection time &lt;italic toggle=\"yes\"&gt;τ&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;I&lt;/italic&gt;&lt;/sub&gt; and &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $Rrightarrow I$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt;&lt;mml:mi&gt;I&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6975ieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; after recovery time &lt;italic toggle=\"yes\"&gt;τ&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt;&lt;/sub&gt;. Depending on the value of the parameter &lt;italic toggle=\"yes\"&gt;τ&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt;&lt;/sub&gt;, the SIRS model can be reduced to the following two well-known special cases. On the one hand, when &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $tau_R rightarrow 0$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;τ&lt;/mml:mi&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6975ieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, the SIRS model reduces to the SIS model. On the other hand, when &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $tau_R rightarrow infty$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;τ&lt;/mml:mi&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo stretchy=\"false\"&gt;→&lt;/mml:mo&gt;&lt;mml:mi mathvariant=\"normal\"&gt;∞&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6975ieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; the model reduces to the SIR model. It is known that whereas the SIS model belongs to the DP universality class, the SIR model belongs to the DyP universality class. We can deduce from the model dynamics that SIRS will behave as the SIS model for any finite values of &lt;italic toggle=\"yes\"&gt;τ&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt;&lt;/sub&gt;. The model will behave as SIR only when &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $tau_R = infty$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:m","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"45 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic thermodynamics of micromagnetics 微磁学的随机热力学
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-30 DOI: 10.1088/1742-5468/ad6c2f
Mingnan Ding, Jun Wu, Xiangjun Xing
In this work, we study the stochastic thermodynamics of micro-magnetic systems. We first formulate the stochastic dynamics of micro-magnetic systems by incorporating noises into the Landau–Lifshitz (LL) equation, which describes the irreversible and deterministic dynamics of magnetic moments. The resulting stochastic LL equation obeys detailed balance, which guarantees that, with the external field fixed, the system converges to thermodynamic equilibrium with vanishing entropy production and with non-vanishing probability current. We then discuss various thermodynamic variables both at the trajectory level and at the ensemble level, and further establish both the first and the second laws of thermodynamics. Finally, we establish the Crooks fluctuation theorem, and verify it using numerical simulations.
在这项工作中,我们研究了微磁系统的随机热力学。我们首先将噪声纳入描述磁矩不可逆和确定性动态的 Landau-Lifshitz (LL) 方程,从而制定微磁系统的随机动力学。由此产生的随机 LL 方程服从详细平衡,这保证了在外部磁场固定的情况下,系统收敛到热力学平衡,熵产生消失,概率电流不消失。然后,我们讨论了轨迹层面和集合层面的各种热力学变量,并进一步建立了热力学第一定律和第二定律。最后,我们建立了克鲁克斯波动定理,并通过数值模拟进行了验证。
{"title":"Stochastic thermodynamics of micromagnetics","authors":"Mingnan Ding, Jun Wu, Xiangjun Xing","doi":"10.1088/1742-5468/ad6c2f","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6c2f","url":null,"abstract":"In this work, we study the stochastic thermodynamics of micro-magnetic systems. We first formulate the stochastic dynamics of micro-magnetic systems by incorporating noises into the Landau–Lifshitz (LL) equation, which describes the irreversible and deterministic dynamics of magnetic moments. The resulting stochastic LL equation obeys detailed balance, which guarantees that, with the external field fixed, the system converges to thermodynamic equilibrium with vanishing entropy production and with non-vanishing probability current. We then discuss various thermodynamic variables both at the trajectory level and at the ensemble level, and further establish both the first and the second laws of thermodynamics. Finally, we establish the Crooks fluctuation theorem, and verify it using numerical simulations.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tagged particle behavior in a harmonic chain of direction-reversing active Brownian particles 反方向主动布朗粒子谐波链中的标记粒子行为
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-28 DOI: 10.1088/1742-5468/ad6133
Shashank Prakash, Urna Basu, Sanjib Sabhapandit
We study the tagged particle dynamics in a harmonic chain of direction-reversing active Brownian particles, with the spring constant <italic toggle="yes">k</italic>, rotation diffusion coefficient <italic toggle="yes">D</italic><sub><italic toggle="yes">R</italic></sub>, and directional reversal rate <italic toggle="yes">γ</italic>. We exactly compute the tagged particle position variance for quenched and annealed initial orientations of the particles. For well-separated time-scales, <inline-formula><tex-math><?CDATA $k^{-1}, D_R^{-1}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msup><mml:mi>k</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:msubsup><mml:mi>D</mml:mi><mml:mi>R</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6133ieqn1.gif"></inline-graphic></inline-formula> and <italic toggle="yes">γ</italic><sup>−1</sup>, the strength of the spring constant <italic toggle="yes">k</italic> relative to <italic toggle="yes">D</italic><sub><italic toggle="yes">R</italic></sub> and <italic toggle="yes">γ</italic> gives rise to different coupling limits, and for each coupling limit there are short, intermediate, and long-time regimes. In the thermodynamic limit, we show that, to the leading order, the tagged particle variance exhibits an algebraic growth <italic toggle="yes">t</italic><sup><italic toggle="yes">ν</italic></sup>, where the value of the exponent <italic toggle="yes">ν</italic> depends on the specific regime. For a quenched initial orientation, the exponent <italic toggle="yes">ν</italic> crosses over from 3 to <inline-formula><tex-math><?CDATA $1/2$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6133ieqn2.gif"></inline-graphic></inline-formula>, via intermediate values <inline-formula><tex-math><?CDATA $5/2$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6133ieqn3.gif"></inline-graphic></inline-formula> or 1, depending on the specific coupling limits. However, for the annealed initial orientation, <italic toggle="yes">ν</italic> crosses over from 2 to <inline-formula><tex-math><?CDATA $1/2$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6133ieqn4.gif"></inline-graphic></inline-formula> via an intermediate value <inline-formula><tex-math><?CDATA $3/2$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>3</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="jstatad6133ieqn5.gif"></inline-graphic></inline-formula> or 1 for the
我们研究了具有弹簧常数 k、旋转扩散系数 DR 和方向逆转率 γ 的方向逆转主动布朗粒子谐波链中的标记粒子动力学。我们精确计算了粒子淬火和退火初始方向的标记粒子位置方差。对于完全不同的时间尺度 k-1、DR-1 和 γ-1,弹簧常数 k 相对于 DR 和 γ 的强度会产生不同的耦合极限,而对于每种耦合极限,都存在短时、中时和长时区。在热力学极限中,我们表明,在先导阶,标记粒子方差表现出代数增长 tν,其中指数 ν 的值取决于特定制度。对于淬火初始取向,指数ν从 3 到 1/2,中间值为 5/2 或 1,取决于特定的耦合极限。然而,对于退火初始取向,ν从 2 到 1/2,中间值分别为强耦合极限和弱耦合极限的 3/2 或 1。我们的研究表明,标记粒子方差在 tN 上的行为可以用交叉缩放函数来表示,我们精确地找到了这个函数。此外,我们还研究了速度自相关性。最后,我们通过计算相应的时空相关函数来描述两个连续粒子之间分离的静态行为。
{"title":"Tagged particle behavior in a harmonic chain of direction-reversing active Brownian particles","authors":"Shashank Prakash, Urna Basu, Sanjib Sabhapandit","doi":"10.1088/1742-5468/ad6133","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6133","url":null,"abstract":"We study the tagged particle dynamics in a harmonic chain of direction-reversing active Brownian particles, with the spring constant &lt;italic toggle=\"yes\"&gt;k&lt;/italic&gt;, rotation diffusion coefficient &lt;italic toggle=\"yes\"&gt;D&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt;&lt;/sub&gt;, and directional reversal rate &lt;italic toggle=\"yes\"&gt;γ&lt;/italic&gt;. We exactly compute the tagged particle position variance for quenched and annealed initial orientations of the particles. For well-separated time-scales, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $k^{-1}, D_R^{-1}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;k&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;D&lt;/mml:mi&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6133ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; and &lt;italic toggle=\"yes\"&gt;γ&lt;/italic&gt;&lt;sup&gt;−1&lt;/sup&gt;, the strength of the spring constant &lt;italic toggle=\"yes\"&gt;k&lt;/italic&gt; relative to &lt;italic toggle=\"yes\"&gt;D&lt;/italic&gt;&lt;sub&gt;&lt;italic toggle=\"yes\"&gt;R&lt;/italic&gt;&lt;/sub&gt; and &lt;italic toggle=\"yes\"&gt;γ&lt;/italic&gt; gives rise to different coupling limits, and for each coupling limit there are short, intermediate, and long-time regimes. In the thermodynamic limit, we show that, to the leading order, the tagged particle variance exhibits an algebraic growth &lt;italic toggle=\"yes\"&gt;t&lt;/italic&gt;&lt;sup&gt;&lt;italic toggle=\"yes\"&gt;ν&lt;/italic&gt;&lt;/sup&gt;, where the value of the exponent &lt;italic toggle=\"yes\"&gt;ν&lt;/italic&gt; depends on the specific regime. For a quenched initial orientation, the exponent &lt;italic toggle=\"yes\"&gt;ν&lt;/italic&gt; crosses over from 3 to &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $1/2$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6133ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, via intermediate values &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $5/2$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6133ieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; or 1, depending on the specific coupling limits. However, for the annealed initial orientation, &lt;italic toggle=\"yes\"&gt;ν&lt;/italic&gt; crosses over from 2 to &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $1/2$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6133ieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; via an intermediate value &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $3/2$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;3&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"jstatad6133ieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; or 1 for the","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian theory of market impact 市场影响的贝叶斯理论
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-28 DOI: 10.1088/1742-5468/ad5271
Louis Saddier, Matteo Marsili
The available liquidity at any time in financial markets falls largely short of the typical size of the orders that institutional investors would trade. In order to reduce the impact on prices due to the execution of large orders, traders in financial markets split large orders into a series of smaller ones, which are executed sequentially. The resulting sequence of trades is called a meta-order. Empirical studies have revealed a non-trivial set of statistical laws on how meta-orders affect prices, which include (i) the square-root behaviour of the expected price variation with the total volume traded, (ii) its crossover to a linear regime for small volumes and (iii) a reversion of average prices towards its initial value, after the sequence of trades is over. Here we recover this phenomenology within a minimal theoretical framework where the market sets prices by incorporating all information on the direction and speed of trade of the meta-order in a Bayesian manner. The simplicity of this derivation lends further support to the robustness and universality of market impact laws. In particular, it suggests that the square-root impact law originates from over-estimation of order flows originating from meta-orders.
金融市场上任何时候的可用流动性在很大程度上都无法满足机构投资者交易订单的典型规模。为了减少执行大订单对价格的影响,金融市场上的交易者会将大订单拆分成一系列小订单,然后按顺序执行。由此产生的交易序列称为元订单。实证研究揭示了元订单如何影响价格的一系列统计规律,其中包括:(i) 预期价格变化与总交易量的平方根行为;(ii) 小交易量时与线性机制的交叉;(iii) 序列交易结束后,平均价格向初始值回归。在这里,我们在一个最小的理论框架内恢复了这一现象,即市场通过以贝叶斯方式纳入有关元订单交易方向和速度的所有信息来确定价格。这一推导的简单性进一步证明了市场影响法则的稳健性和普遍性。特别是,它表明平方根影响法则源于对元订单产生的订单流的高估。
{"title":"A Bayesian theory of market impact","authors":"Louis Saddier, Matteo Marsili","doi":"10.1088/1742-5468/ad5271","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5271","url":null,"abstract":"The available liquidity at any time in financial markets falls largely short of the typical size of the orders that institutional investors would trade. In order to reduce the impact on prices due to the execution of large orders, traders in financial markets split large orders into a series of smaller ones, which are executed sequentially. The resulting sequence of trades is called a meta-order. Empirical studies have revealed a non-trivial set of statistical laws on how meta-orders affect prices, which include (i) the square-root behaviour of the expected price variation with the total volume traded, (ii) its crossover to a linear regime for small volumes and (iii) a reversion of average prices towards its initial value, after the sequence of trades is over. Here we recover this phenomenology within a minimal theoretical framework where the market sets prices by incorporating all information on the direction and speed of trade of the meta-order in a Bayesian manner. The simplicity of this derivation lends further support to the robustness and universality of market impact laws. In particular, it suggests that the square-root impact law originates from over-estimation of order flows originating from meta-orders.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"50 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of SIS epidemic model in bi-uniform hypernetworks 双均匀超网络中的 SIS 流行模型分析
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-22 DOI: 10.1088/1742-5468/ad6c30
Wenhui Wang, Juping Zhang, Maoxing Liu, Zhen Jin
To describe the dynamics of epidemic spread with multiple individuals interacting with each other, we develop a susceptible-infected-susceptible (SIS) spread model with collective and individual contagion in general hypernetworks with higher-order interactions. The constructed model is applied to a bi-uniform hypernetwork to obtain a mean-field model for the SIS model. The threshold value at which an epidemic can spread in the bi-uniform hypernetwork is obtained and analyzed dynamically. By analysis, the model leads to bistability, in which a disease-free equilibrium and an endemic equilibrium coexist. Finally, numerical simulations of the developed model are carried out to give the effect of the proportion of individual contagion hyperedges on the spread of an epidemic.
为了描述多个体相互作用的流行病传播动态,我们建立了一个具有高阶相互作用的一般超网络中集体和个体传染的易感-感染-易感(SIS)传播模型。我们将所构建的模型应用于双均匀超网络,从而获得 SIS 模型的均值场模型。得到了流行病在双均匀超网络中传播的阈值,并对其进行了动态分析。通过分析,该模型具有双稳态性,即无疾病平衡和流行平衡共存。最后,对所建立的模型进行了数值模拟,给出了单个传染超导的比例对流行病传播的影响。
{"title":"Analysis of SIS epidemic model in bi-uniform hypernetworks","authors":"Wenhui Wang, Juping Zhang, Maoxing Liu, Zhen Jin","doi":"10.1088/1742-5468/ad6c30","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6c30","url":null,"abstract":"To describe the dynamics of epidemic spread with multiple individuals interacting with each other, we develop a susceptible-infected-susceptible (SIS) spread model with collective and individual contagion in general hypernetworks with higher-order interactions. The constructed model is applied to a bi-uniform hypernetwork to obtain a mean-field model for the SIS model. The threshold value at which an epidemic can spread in the bi-uniform hypernetwork is obtained and analyzed dynamically. By analysis, the model leads to bistability, in which a disease-free equilibrium and an endemic equilibrium coexist. Finally, numerical simulations of the developed model are carried out to give the effect of the proportion of individual contagion hyperedges on the spread of an epidemic.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"2010 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary symmetry breaking of flocking systems 成群系统的边界对称破缺
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-22 DOI: 10.1088/1742-5468/ad6c2e
Leonardo Lenzini, Giuseppe Fava, Francesco Ginelli
We consider a flocking system confined transversally between two infinite reflecting parallel walls separated by a distance L. Infinite or periodic boundary conditions are assumed longitudinally to the direction of collective motion, defining a ring geometry typical of experimental realizations with flocking active colloids. Such a confinement selects a flocking state with its mean direction aligned parallel to the wall, thus breaking explicitly the rotational symmetry locally by a boundary effect. Finite size scaling analysis and numerical simulations show that confinement induces an effective mass term McLζ (with positive ζ being equal to the dynamical scaling exponent of the free theory) suppressing scale free correlations at small wave-numbers. However, due to the finite system size in the transversal direction, this effect can only be detected for large enough longitudinal system sizes (i.e. narrow ring geometries). Furthermore, in the longitudinal direction, density correlations are characterized by an anomalous effective mass term. The effective mass term also enhances the global scalar order parameter and suppresses fluctuations of the mean flocking direction. These results suggest an equivalence between transversal confinement and driving by an homogeneous external field, which breaks the rotational symmetry at the global level.
我们考虑了一个横向限制在两个无限反射平行壁之间的成群系统,两壁之间的距离为 L⊥。假定在集体运动方向的纵向上存在无限或周期性的边界条件,从而定义了一个典型的环形几何图形,该几何图形是实验中实现的成群活动胶体。这种限制选择了平均方向平行于壁的成群状态,从而通过边界效应在局部明确打破了旋转对称性。有限尺寸缩放分析和数值模拟表明,束缚会引起有效质量项 Mc∼L⊥-ζ(正ζ等于自由理论的动态缩放指数),从而抑制小波数下的无尺度相关性。然而,由于横向的系统尺寸有限,只有在纵向系统尺寸足够大时(即窄环几何结构)才能检测到这种效应。此外,在纵向上,密度相关性的特征是异常有效质量项。有效质量项还增强了全局标量有序参数,抑制了平均成群方向的波动。这些结果表明,横向约束与均匀外部场驱动之间是等价的,后者在全局水平上打破了旋转对称性。
{"title":"Boundary symmetry breaking of flocking systems","authors":"Leonardo Lenzini, Giuseppe Fava, Francesco Ginelli","doi":"10.1088/1742-5468/ad6c2e","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6c2e","url":null,"abstract":"We consider a flocking system confined transversally between two infinite reflecting parallel walls separated by a distance <inline-formula>\u0000<tex-math><?CDATA $L_perp$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mo>⊥</mml:mo></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad6c2eieqn1.gif\"></inline-graphic></inline-formula>. Infinite or periodic boundary conditions are assumed longitudinally to the direction of collective motion, defining a ring geometry typical of experimental realizations with flocking active colloids. Such a confinement selects a flocking state with its mean direction aligned parallel to the wall, thus breaking explicitly the rotational symmetry locally by a boundary effect. Finite size scaling analysis and numerical simulations show that confinement induces an effective mass term <inline-formula>\u0000<tex-math><?CDATA ${M_c} sim L_perp^{-zeta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow><mml:mo>∼</mml:mo><mml:msubsup><mml:mi>L</mml:mi><mml:mo>⊥</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>ζ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad6c2eieqn2.gif\"></inline-graphic></inline-formula> (with positive <italic toggle=\"yes\">ζ</italic> being equal to the dynamical scaling exponent of the free theory) suppressing scale free correlations at small wave-numbers. However, due to the finite system size in the transversal direction, this effect can only be detected for large enough longitudinal system sizes (i.e. narrow ring geometries). Furthermore, in the longitudinal direction, density correlations are characterized by an anomalous effective mass term. The effective mass term also enhances the global scalar order parameter and suppresses fluctuations of the mean flocking direction. These results suggest an equivalence between transversal confinement and driving by an homogeneous external field, which breaks the rotational symmetry at the global level.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"30 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of phase separation on extinction times in population models 相分离对种群模型中消亡时间的影响
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-22 DOI: 10.1088/1742-5468/ad5c59
Janik Schüttler, Robert L Jack, Michael E Cates
We study the effect of phase-separating diffusive dynamics on the mean time to extinction (MTE) in several reaction-diffusion models with slow reactions. We consider a continuum theory similar to model AB, and a simple model where individual particles on two sites undergo on-site reactions and hopping between the sites. In the slow-reaction limit, we project the models’ dynamics onto suitable one-dimensional reaction coordinates, which allows the derivation of quasi-equilibrium effective free energies. For weak noise, this enables characterisation of the MTE. This time can be enhanced or suppressed by the addition of phase separation, compared with homogeneous reference cases. We discuss how Allee effects can be affected by phase separation, including situations where the tendency to phase-separate renders an otherwise stable population unstable.
我们研究了在几种慢反应的反应扩散模型中,相分离扩散动力学对平均消亡时间(MTE)的影响。我们考虑了类似于 AB 模型的连续体理论,以及两个位点上的单个粒子发生现场反应并在位点间跳跃的简单模型。在慢反应极限,我们将模型的动力学投影到合适的一维反应坐标上,从而推导出准平衡有效自由能。对于弱噪声,这就能确定 MTE 的特征。与同质参考情况相比,相分离的加入可以增强或抑制这一时间。我们将讨论相分离如何影响阿利效应,包括相分离趋势使原本稳定的种群变得不稳定的情况。
{"title":"Effects of phase separation on extinction times in population models","authors":"Janik Schüttler, Robert L Jack, Michael E Cates","doi":"10.1088/1742-5468/ad5c59","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5c59","url":null,"abstract":"We study the effect of phase-separating diffusive dynamics on the mean time to extinction (MTE) in several reaction-diffusion models with slow reactions. We consider a continuum theory similar to model AB, and a simple model where individual particles on two sites undergo on-site reactions and hopping between the sites. In the slow-reaction limit, we project the models’ dynamics onto suitable one-dimensional reaction coordinates, which allows the derivation of quasi-equilibrium effective free energies. For weak noise, this enables characterisation of the MTE. This time can be enhanced or suppressed by the addition of phase separation, compared with homogeneous reference cases. We discuss how Allee effects can be affected by phase separation, including situations where the tendency to phase-separate renders an otherwise stable population unstable.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of crystal grain size on the behavior of disordered ferromagnetic systems: from thin to bulk geometry 晶体晶粒尺寸对无序铁磁系统行为的影响:从薄片到块状几何体
IF 2.4 3区 物理与天体物理 Q2 MECHANICS Pub Date : 2024-08-22 DOI: 10.1088/1742-5468/ad6977
Djordje Spasojević, Sanja Janićević
We report the findings of an extensive and systematic study on the effect of crystal grain size on the response of field-driven disordered ferromagnetic systems with thin, intermediate, and bulk geometry. For numerical modeling we used the athermal nonequilibrium variant of the random field Ising model simulating the systems with tightly packed and uniformly cubic-shaped, magnetically exchange-coupled crystal grains, conducted over a wide range of grain sizes. Together with the standard hysteresis loop characterizations, we offer an in-depth examination of the avalanching response of the system, estimating the effective grain-size-related exponents by analyses of the distributions of various avalanche parameters, average avalanche shape and size, and power spectra. Our results demonstrate that grain size plays an important role in the behavior of the system, outweighing the effect of its geometry. For sufficiently small grains, the characteristics of the system response are largely unaffected by grain size; however, for larger grains, the effects become more noticeable and show up as distinct asymmetry in the magnetization susceptibilities and average avalanche shapes, as well as characteristic kinks in the distributions of avalanche parameters, susceptibilities, and magnetizations for the largest grain sizes. Our insights, unveiling the sensitivity of the system’s response to the underlying structure in terms of crystal grain size, may prove beneficial in interpreting and analyzing experimental results obtained from driven disordered ferromagnetic samples of different geometries, as well as in extending the range of possible applications.
我们报告了一项广泛而系统的研究结果:晶体晶粒大小对具有薄型、中间型和块状几何形状的场驱动无序铁磁系统响应的影响。在数值建模中,我们使用了随机场伊辛模型的热非平衡态变体,模拟了具有紧密堆积和均匀立方体形状的磁交换耦合晶粒的系统,并在广泛的晶粒尺寸范围内进行了模拟。通过分析各种雪崩参数的分布、平均雪崩形状和尺寸以及功率谱,我们估算出了与晶粒尺寸相关的有效指数。我们的结果表明,晶粒尺寸在系统行为中起着重要作用,其影响超过了几何尺寸。对于足够小的晶粒,系统响应的特征基本上不受晶粒大小的影响;然而,对于较大的晶粒,其影响变得更加明显,表现为磁化电感和平均雪崩形状的明显不对称,以及雪崩参数、电感和磁化分布的特征性扭结。我们的见解揭示了系统响应对晶体晶粒大小的底层结构的敏感性,可能有助于解释和分析从不同几何形状的驱动无序铁磁样品中获得的实验结果,并扩大可能的应用范围。
{"title":"The impact of crystal grain size on the behavior of disordered ferromagnetic systems: from thin to bulk geometry","authors":"Djordje Spasojević, Sanja Janićević","doi":"10.1088/1742-5468/ad6977","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6977","url":null,"abstract":"We report the findings of an extensive and systematic study on the effect of crystal grain size on the response of field-driven disordered ferromagnetic systems with thin, intermediate, and bulk geometry. For numerical modeling we used the athermal nonequilibrium variant of the random field Ising model simulating the systems with tightly packed and uniformly cubic-shaped, magnetically exchange-coupled crystal grains, conducted over a wide range of grain sizes. Together with the standard hysteresis loop characterizations, we offer an in-depth examination of the avalanching response of the system, estimating the effective grain-size-related exponents by analyses of the distributions of various avalanche parameters, average avalanche shape and size, and power spectra. Our results demonstrate that grain size plays an important role in the behavior of the system, outweighing the effect of its geometry. For sufficiently small grains, the characteristics of the system response are largely unaffected by grain size; however, for larger grains, the effects become more noticeable and show up as distinct asymmetry in the magnetization susceptibilities and average avalanche shapes, as well as characteristic kinks in the distributions of avalanche parameters, susceptibilities, and magnetizations for the largest grain sizes. Our insights, unveiling the sensitivity of the system’s response to the underlying structure in terms of crystal grain size, may prove beneficial in interpreting and analyzing experimental results obtained from driven disordered ferromagnetic samples of different geometries, as well as in extending the range of possible applications.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Statistical Mechanics: Theory and Experiment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1