首页 > 最新文献

Journal of the American Statistical Association最新文献

英文 中文
Two sample test for covariance matrices in ultra-high dimension 超高维协方差矩阵的两次抽样检验
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-11-04 DOI: 10.1080/01621459.2024.2423971
Xiucai Ding, Yichen Hu, Zhenggang Wang
In this paper, we propose a new test for testing the equality of two population covariance matrices in the ultra-high dimensional setting that the dimension is much larger than the sizes of both of...
在本文中,我们提出了一种新的检验方法,用于在维度远大于两个种群协方差矩阵大小的超高维环境中检验两个种群协方差矩阵的相等性。
{"title":"Two sample test for covariance matrices in ultra-high dimension","authors":"Xiucai Ding, Yichen Hu, Zhenggang Wang","doi":"10.1080/01621459.2024.2423971","DOIUrl":"https://doi.org/10.1080/01621459.2024.2423971","url":null,"abstract":"In this paper, we propose a new test for testing the equality of two population covariance matrices in the ultra-high dimensional setting that the dimension is much larger than the sizes of both of...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Nonparametrics for Causal Inference and Missing Data 用于因果推断和缺失数据的贝叶斯非参数法
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-11-04 DOI: 10.1080/01621459.2024.2423435
P. Richard Hahn
Published in Journal of the American Statistical Association (Just accepted, 2024)
发表于《美国统计协会期刊》(刚刚接受,2024 年)
{"title":"Bayesian Nonparametrics for Causal Inference and Missing Data","authors":"P. Richard Hahn","doi":"10.1080/01621459.2024.2423435","DOIUrl":"https://doi.org/10.1080/01621459.2024.2423435","url":null,"abstract":"Published in Journal of the American Statistical Association (Just accepted, 2024)","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"59 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical and computational efficiency for smooth tensor estimation with unknown permutations 未知排列的平滑张量估算的统计和计算效率
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-25 DOI: 10.1080/01621459.2024.2419114
Chanwoo Lee, Miaoyan Wang
We consider the problem of structured tensor denoising in the presence of unknown permutations. Such data problems arise commonly in recommendation systems, neuroimaging, community detection, and m...
我们考虑的是未知排列情况下的结构张量去噪问题。此类数据问题通常出现在推荐系统、神经成像、群落检测和移动设备中。
{"title":"Statistical and computational efficiency for smooth tensor estimation with unknown permutations","authors":"Chanwoo Lee, Miaoyan Wang","doi":"10.1080/01621459.2024.2419114","DOIUrl":"https://doi.org/10.1080/01621459.2024.2419114","url":null,"abstract":"We consider the problem of structured tensor denoising in the presence of unknown permutations. Such data problems arise commonly in recommendation systems, neuroimaging, community detection, and m...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix GARCH model: Inference and application* 矩阵 GARCH 模型:推理与应用*
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-18 DOI: 10.1080/01621459.2024.2415719
Cheng Yu, Dong Li, Feiyu Jiang, Ke Zhu
Matrix-variate time series data are largely available in applications. However, no attempt has been made to study their conditional heteroskedasticity that is often observed in economic and financi...
矩阵变量时间序列数据在应用中非常普遍。然而,目前还没有人尝试研究它们的条件异方差性,而这种异方差性在经济和金融领域中经常出现。
{"title":"Matrix GARCH model: Inference and application*","authors":"Cheng Yu, Dong Li, Feiyu Jiang, Ke Zhu","doi":"10.1080/01621459.2024.2415719","DOIUrl":"https://doi.org/10.1080/01621459.2024.2415719","url":null,"abstract":"Matrix-variate time series data are largely available in applications. However, no attempt has been made to study their conditional heteroskedasticity that is often observed in economic and financi...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eDNAPlus: A unifying modelling framework for DNA-based biodiversity monitoring eDNAPlus:基于 DNA 的生物多样性监测统一建模框架
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-18 DOI: 10.1080/01621459.2024.2412362
Alex Diana, Eleni Matechou, Jim Griffin, Douglas W. Yu, Mingjie Luo, Marie Tosa, Alex Bush, Richard Griffiths
DNA-based biodiversity surveys, which involve collecting physical samples from survey sites and assaying them in the laboratory to detect species via their diagnostic DNA sequences, are increasingl...
基于DNA的生物多样性调查涉及从调查地点收集物理样本并在实验室进行化验,以通过其诊断性DNA序列检测物种。
{"title":"eDNAPlus: A unifying modelling framework for DNA-based biodiversity monitoring","authors":"Alex Diana, Eleni Matechou, Jim Griffin, Douglas W. Yu, Mingjie Luo, Marie Tosa, Alex Bush, Richard Griffiths","doi":"10.1080/01621459.2024.2412362","DOIUrl":"https://doi.org/10.1080/01621459.2024.2412362","url":null,"abstract":"DNA-based biodiversity surveys, which involve collecting physical samples from survey sites and assaying them in the laboratory to detect species via their diagnostic DNA sequences, are increasingl...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"79 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Modelling and Prediction of High-Dimensional Functional Time Series 论高维函数时间序列的建模与预测
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-15 DOI: 10.1080/01621459.2024.2413201
Jinyuan Chang, Qin Fang, Xinghao Qiao, Qiwei Yao
We propose a two-step procedure to model and predict high-dimensional functional time series, where the number of function-valued time series p is large in relation to the length of time series n. ...
我们提出了一个两步程序来模拟和预测高维函数时间序列,其中函数值时间序列的数量 p 相对于时间序列的长度 n 较大。
{"title":"On the Modelling and Prediction of High-Dimensional Functional Time Series","authors":"Jinyuan Chang, Qin Fang, Xinghao Qiao, Qiwei Yao","doi":"10.1080/01621459.2024.2413201","DOIUrl":"https://doi.org/10.1080/01621459.2024.2413201","url":null,"abstract":"We propose a two-step procedure to model and predict high-dimensional functional time series, where the number of function-valued time series p is large in relation to the length of time series n. ...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep regression learning with optimal loss function 具有最佳损失函数的深度回归学习
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-15 DOI: 10.1080/01621459.2024.2412364
Xuancheng Wang, Ling Zhou, Huazhen Lin
In this paper, we develop a novel efficient and robust nonparametric regression estimator under a framework of a feedforward neural network (FNN). There are several interesting characteristics for ...
在本文中,我们在前馈神经网络(FNN)的框架下开发了一种新型高效、稳健的非参数回归估计器。它有几个有趣的特点: ...
{"title":"Deep regression learning with optimal loss function","authors":"Xuancheng Wang, Ling Zhou, Huazhen Lin","doi":"10.1080/01621459.2024.2412364","DOIUrl":"https://doi.org/10.1080/01621459.2024.2412364","url":null,"abstract":"In this paper, we develop a novel efficient and robust nonparametric regression estimator under a framework of a feedforward neural network (FNN). There are several interesting characteristics for ...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"32 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Permutation Tests in Linear Instrumental Variables Regression 线性工具变量回归中的稳健置换检验
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-15 DOI: 10.1080/01621459.2024.2412363
Purevdorj Tuvaandorj
This paper develops permutation versions of identification-robust tests in linear instrumental variables regression. Unlike the existing randomization and rank-based tests in which independence bet...
本文开发了线性工具变量回归中的换元版本识别稳健检验。与现有的随机化检验和基于等级的检验不同的是,这些检验中,...
{"title":"Robust Permutation Tests in Linear Instrumental Variables Regression","authors":"Purevdorj Tuvaandorj","doi":"10.1080/01621459.2024.2412363","DOIUrl":"https://doi.org/10.1080/01621459.2024.2412363","url":null,"abstract":"This paper develops permutation versions of identification-robust tests in linear instrumental variables regression. Unlike the existing randomization and rank-based tests in which independence bet...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"106 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain Additive Covariance Matrix Models:英国地区电力净需求建模
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-11 DOI: 10.1080/01621459.2024.2412361
Vincenzo Gioia, Matteo Fasiolo, Jethro Browell, Ruggero Bellio
Forecasts of regional electricity net-demand, consumption minus embedded generation, are an essential input for reliable and economic power system operation, and energy trading. While such forecast...
对地区电力净需求(消耗量减去内含发电量)的预测,是可靠、经济的电力系统运行和能源交易的重要输入。虽然这种预测...
{"title":"Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain","authors":"Vincenzo Gioia, Matteo Fasiolo, Jethro Browell, Ruggero Bellio","doi":"10.1080/01621459.2024.2412361","DOIUrl":"https://doi.org/10.1080/01621459.2024.2412361","url":null,"abstract":"Forecasts of regional electricity net-demand, consumption minus embedded generation, are an essential input for reliable and economic power system operation, and energy trading. While such forecast...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"70 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operationalizing Legislative Bodies: A Methodological and Empirical Perspective with a Bayesian Approach 立法机构的可操作性:贝叶斯方法的方法论和实证视角
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-10 DOI: 10.1080/01621459.2024.2413928
Carolina Luque, Juan Sosa
This manuscript extensively reviews applications, extensions, and models derived from the Bayesian ideal point estimator. We focus our attention on studies conducted in the United States as well as...
本手稿广泛评述了贝叶斯理想点估计器的应用、扩展和衍生模型。我们重点关注在美国进行的研究以及...
{"title":"Operationalizing Legislative Bodies: A Methodological and Empirical Perspective with a Bayesian Approach","authors":"Carolina Luque, Juan Sosa","doi":"10.1080/01621459.2024.2413928","DOIUrl":"https://doi.org/10.1080/01621459.2024.2413928","url":null,"abstract":"This manuscript extensively reviews applications, extensions, and models derived from the Bayesian ideal point estimator. We focus our attention on studies conducted in the United States as well as...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"58 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Statistical Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1