首页 > 最新文献

Journal of the American Statistical Association最新文献

英文 中文
PALAR: Estimation of Absolute Abundance Effects in Regression with Relative Abundance Predictors 用相对丰度预测因子估计回归中的绝对丰度效应
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2596250
Yiluan Li, Qiyu Wang, Zekang Feng, Xueqin Wang, Zheng-Zheng Tang
{"title":"PALAR: Estimation of Absolute Abundance Effects in Regression with Relative Abundance Predictors","authors":"Yiluan Li, Qiyu Wang, Zekang Feng, Xueqin Wang, Zheng-Zheng Tang","doi":"10.1080/01621459.2025.2596250","DOIUrl":"https://doi.org/10.1080/01621459.2025.2596250","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"166 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ball Impurity: Measuring Heterogeneity in General Metric Spaces 球杂质:测量一般度量空间中的非均质性
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2595733
Menglu Che, Ting Li, Wenliang Pan, Xueqin Wang, Heping Zhang
{"title":"Ball Impurity: Measuring Heterogeneity in General Metric Spaces","authors":"Menglu Che, Ting Li, Wenliang Pan, Xueqin Wang, Heping Zhang","doi":"10.1080/01621459.2025.2595733","DOIUrl":"https://doi.org/10.1080/01621459.2025.2595733","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"362 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian nonparametric spectral analysis of locally stationary processes* 局部平稳过程的贝叶斯非参数谱分析*
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2594191
Yifu Tang, Claudia Kirch, Jeong Eun Lee, Renate Meyer
{"title":"Bayesian nonparametric spectral analysis of locally stationary processes*","authors":"Yifu Tang, Claudia Kirch, Jeong Eun Lee, Renate Meyer","doi":"10.1080/01621459.2025.2594191","DOIUrl":"https://doi.org/10.1080/01621459.2025.2594191","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"56 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate Analysis for Multiple Network Data via Semi-Symmetric Tensor PCA 基于半对称张量PCA的多网络数据多元分析
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2596288
Michael Weylandt, George Michailidis
{"title":"Multivariate Analysis for Multiple Network Data via Semi-Symmetric Tensor PCA","authors":"Michael Weylandt, George Michailidis","doi":"10.1080/01621459.2025.2596288","DOIUrl":"https://doi.org/10.1080/01621459.2025.2596288","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"56 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Nonparametric Quasi Likelihood 平衡不对称对称性
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2594185
Antonio R. Linero
{"title":"Bayesian Nonparametric Quasi Likelihood","authors":"Antonio R. Linero","doi":"10.1080/01621459.2025.2594185","DOIUrl":"https://doi.org/10.1080/01621459.2025.2594185","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"148 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Rank Online Dynamic Assortment with Dual Contextual Information 具有双重上下文信息的低阶在线动态分类
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2597043
Seong Jin Lee, Will Wei Sun, Yufeng Liu
{"title":"Low-Rank Online Dynamic Assortment with Dual Contextual Information","authors":"Seong Jin Lee, Will Wei Sun, Yufeng Liu","doi":"10.1080/01621459.2025.2597043","DOIUrl":"https://doi.org/10.1080/01621459.2025.2597043","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic Shape Analysis of Movement Data. 运动数据的弹性形状分析。
IF 3 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-08 DOI: 10.1080/01621459.2025.2572778
J E Borgert, Jan Hannig, J D Tucker, Liubov Arbeeva, Ashley N Buck, Yvonne M Golightly, Stephen P Messier, Amanda E Nelson, J S Marron

Osteoarthritis (OA) is a highly prevalent degenerative joint disease, and the knee is the most commonly affected joint. Biomechanical factors, particularly forces exerted during walking, are often measured in modern studies of knee joint injury and OA, and understanding the relationship among biomechanics, clinical profiles, and OA has high clinical relevance. Biomechanical forces are typically represented as curves over time, but a standard practice in biomechanics research is to summarize these curves by a small number of discrete values (or landmarks). The objective of this work is to demonstrate the added value of analyzing full movement curves over conventional discrete summaries. We developed a shape-based representation of variation in full biomechanical curve data from the Intensive Diet and Exercise for Arthritis (IDEA) study (Messier et al., 2009, 2013), and demonstrated through nested model comparisons that our approach, compared to conventional discrete summaries, yields stronger associations with OA severity and OA-related clinical traits. Notably, our work is among the first to quantitatively evaluate the added value of analyzing full movement curves over conventional discrete summaries.

骨关节炎(OA)是一种非常普遍的退行性关节疾病,膝关节是最常见的关节。生物力学因素,特别是行走时施加的力,在膝关节损伤和OA的现代研究中经常被测量,理解生物力学、临床特征和OA之间的关系具有很高的临床相关性。生物力学力通常表现为随时间变化的曲线,但生物力学研究的标准做法是用少量离散值(或地标)来总结这些曲线。这项工作的目的是证明分析完整的运动曲线比传统的离散总结的附加价值。我们从强化饮食和运动治疗关节炎(IDEA)研究(Messier et al., 2009, 2013)中开发了一种基于形状的完整生物力学曲线数据变异表示,并通过嵌套模型比较证明,与传统的离散总结相比,我们的方法与OA严重程度和OA相关临床特征有更强的相关性。值得注意的是,我们的工作是第一批定量评估分析完整运动曲线比传统离散总结的附加值的研究之一。
{"title":"Elastic Shape Analysis of Movement Data.","authors":"J E Borgert, Jan Hannig, J D Tucker, Liubov Arbeeva, Ashley N Buck, Yvonne M Golightly, Stephen P Messier, Amanda E Nelson, J S Marron","doi":"10.1080/01621459.2025.2572778","DOIUrl":"10.1080/01621459.2025.2572778","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a highly prevalent degenerative joint disease, and the knee is the most commonly affected joint. Biomechanical factors, particularly forces exerted during walking, are often measured in modern studies of knee joint injury and OA, and understanding the relationship among biomechanics, clinical profiles, and OA has high clinical relevance. Biomechanical forces are typically represented as curves over time, but a standard practice in biomechanics research is to summarize these curves by a small number of discrete values (or <i>landmarks</i>). The objective of this work is to demonstrate the added value of analyzing full movement curves over conventional discrete summaries. We developed a shape-based representation of variation in full biomechanical curve data from the Intensive Diet and Exercise for Arthritis (IDEA) study (Messier et al., 2009, 2013), and demonstrated through nested model comparisons that our approach, compared to conventional discrete summaries, yields stronger associations with OA severity and OA-related clinical traits. Notably, our work is among the first to quantitatively evaluate the added value of analyzing full movement curves over conventional discrete summaries.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12755838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145889476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Signal Matching for Transfer Learning in ERP-Based Brain Computer Interface 基于erp的脑机接口迁移学习贝叶斯信号匹配
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-08 DOI: 10.1080/01621459.2025.2563189
Tianwen Ma, Jane E. Huggins, Jian Kang
{"title":"Bayesian Signal Matching for Transfer Learning in ERP-Based Brain Computer Interface","authors":"Tianwen Ma, Jane E. Huggins, Jian Kang","doi":"10.1080/01621459.2025.2563189","DOIUrl":"https://doi.org/10.1080/01621459.2025.2563189","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariate-Elaborated Robust Partial Information Transfer with Conditional Spike-and-Slab Prior 具有条件spike - slab先验的协变量鲁棒部分信息传递
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-05 DOI: 10.1080/01621459.2025.2591232
Ruqian Zhang, Yijiao Zhang, Annie Qu, Zhongyi Zhu, Juan Shen
{"title":"Covariate-Elaborated Robust Partial Information Transfer with Conditional Spike-and-Slab Prior","authors":"Ruqian Zhang, Yijiao Zhang, Annie Qu, Zhongyi Zhu, Juan Shen","doi":"10.1080/01621459.2025.2591232","DOIUrl":"https://doi.org/10.1080/01621459.2025.2591232","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Belted and Ensembled Neural Network for Linear and Nonlinear Sufficient Dimension Reduction 线性和非线性充分降维的带式和集成神经网络
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-05 DOI: 10.1080/01621459.2025.2590775
Yin Tang, Bing Li
{"title":"Belted and Ensembled Neural Network for Linear and Nonlinear Sufficient Dimension Reduction","authors":"Yin Tang, Bing Li","doi":"10.1080/01621459.2025.2590775","DOIUrl":"https://doi.org/10.1080/01621459.2025.2590775","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"203 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Statistical Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1