首页 > 最新文献

Journal of the American Statistical Association最新文献

英文 中文
A Latent Variable Approach to Learning High-dimensional Multivariate longitudinal Data 一种学习高维多元纵向数据的潜变量方法
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-07 DOI: 10.1080/01621459.2025.2606384
Sze Ming Lee, Yunxiao Chen, Tony Sit
{"title":"A Latent Variable Approach to Learning High-dimensional Multivariate longitudinal Data","authors":"Sze Ming Lee, Yunxiao Chen, Tony Sit","doi":"10.1080/01621459.2025.2606384","DOIUrl":"https://doi.org/10.1080/01621459.2025.2606384","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"9 46 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Image Analysis in Fourier Space. 傅里叶空间中的贝叶斯图像分析。
IF 3 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2573523
John Kornak, Karl Young, Eric Friedman, Konstantinos Bakas

Bayesian image analysis has been instrumental for over 40 years in addressing challenges such as image noise reduction, de-blurring, feature enhancement, and object detection. Despite its success, modeling spatial dependencies inherent to these problems often results in significant computational challenges. This work introduces the Bayesian Image Analysis in Fourier Space (BIFS) framework, which redefines conventional Bayesian modeling for continuous-valued images by transforming the problem into the Fourier domain. This transformation reduces the original high-dimensional dependent estimation problem into multiple low-dimensional, independent subproblems in Fourier space. The BIFS approach thereby simplifies computation while enabling flexible model specification, efficient formulation of isotropic priors, adaptability to diverse prior expectations, and invariance to changes in image resolution. BIFS thus offers a powerful and computationally efficient framework for a wide range of imaging applications. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

40多年来,贝叶斯图像分析在解决图像降噪、去模糊、特征增强和目标检测等挑战方面发挥了重要作用。尽管取得了成功,但这些问题固有的空间依赖性建模通常会导致重大的计算挑战。这项工作介绍了傅立叶空间中的贝叶斯图像分析(BIFS)框架,该框架通过将问题转换为傅立叶域,重新定义了连续值图像的传统贝叶斯建模。这种变换将原来的高维相关估计问题简化为傅里叶空间中的多个低维独立子问题。因此,BIFS方法简化了计算,同时实现了灵活的模型规范、有效的各向同性先验公式、对不同先验期望的适应性以及对图像分辨率变化的不变性。因此,BIFS为广泛的成像应用提供了一个强大且计算效率高的框架。本文的补充材料可在网上获得,包括可用于复制该作品的材料的标准化描述。
{"title":"Bayesian Image Analysis in Fourier Space.","authors":"John Kornak, Karl Young, Eric Friedman, Konstantinos Bakas","doi":"10.1080/01621459.2025.2573523","DOIUrl":"10.1080/01621459.2025.2573523","url":null,"abstract":"<p><p>Bayesian image analysis has been instrumental for over 40 years in addressing challenges such as image noise reduction, de-blurring, feature enhancement, and object detection. Despite its success, modeling spatial dependencies inherent to these problems often results in significant computational challenges. This work introduces the Bayesian Image Analysis in Fourier Space (BIFS) framework, which redefines conventional Bayesian modeling for continuous-valued images by transforming the problem into the Fourier domain. This transformation reduces the original high-dimensional dependent estimation problem into multiple low-dimensional, independent subproblems in Fourier space. The BIFS approach thereby simplifies computation while enabling flexible model specification, efficient formulation of isotropic priors, adaptability to diverse prior expectations, and invariance to changes in image resolution. BIFS thus offers a powerful and computationally efficient framework for a wide range of imaging applications. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12890183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146165605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Likelihood Methods in Survival Analysis: With R Examples 生存分析中的似然方法:附R例
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2605106
Lu Mao
{"title":"Likelihood Methods in Survival Analysis: With R Examples","authors":"Lu Mao","doi":"10.1080/01621459.2025.2605106","DOIUrl":"https://doi.org/10.1080/01621459.2025.2605106","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possibilistic inferential models: a review 可能性推理模型:综述
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2606127
Ryan Martin
{"title":"Possibilistic inferential models: a review","authors":"Ryan Martin","doi":"10.1080/01621459.2025.2606127","DOIUrl":"https://doi.org/10.1080/01621459.2025.2606127","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SurvSTAAR: A powerful statistical framework for rare variant analysis of time-to-event traits in large-scale whole-genome sequencing studies SurvSTAAR:一个强大的统计框架,用于大规模全基因组测序研究中罕见变异的时间-事件特征分析
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2606388
Yidan Cui, Shiyang Ma, Yuxin Yuan, Nengjie Zhu, Haifeng Chen, Ting Wei, Zilin Li, Xihao Li, Zhangsheng Yu
{"title":"SurvSTAAR: A powerful statistical framework for rare variant analysis of time-to-event traits in large-scale whole-genome sequencing studies","authors":"Yidan Cui, Shiyang Ma, Yuxin Yuan, Nengjie Zhu, Haifeng Chen, Ting Wei, Zilin Li, Xihao Li, Zhangsheng Yu","doi":"10.1080/01621459.2025.2606388","DOIUrl":"https://doi.org/10.1080/01621459.2025.2606388","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"45 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Knowledge Transfer in Batch Q* Learning 批Q*学习中数据驱动的知识转移
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2603731
Elynn Chen, Xi Chen, Wenbo Jing
{"title":"Data-Driven Knowledge Transfer in Batch Q* Learning","authors":"Elynn Chen, Xi Chen, Wenbo Jing","doi":"10.1080/01621459.2025.2603731","DOIUrl":"https://doi.org/10.1080/01621459.2025.2603731","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"269 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints 具有跟踪误差和权重约束的高维投资组合分析
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-01-05 DOI: 10.1080/01621459.2025.2602832
Mehmet Caner, Qingliang Fan
{"title":"Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints","authors":"Mehmet Caner, Qingliang Fan","doi":"10.1080/01621459.2025.2602832","DOIUrl":"https://doi.org/10.1080/01621459.2025.2602832","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"47 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factor Augmented Matrix Regression 因子增广矩阵回归
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2595734
Elynn Chen, Jianqing Fan, Xiaonan Zhu
{"title":"Factor Augmented Matrix Regression","authors":"Elynn Chen, Jianqing Fan, Xiaonan Zhu","doi":"10.1080/01621459.2025.2595734","DOIUrl":"https://doi.org/10.1080/01621459.2025.2595734","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of job stability on monetary poverty in Italy: causal small area estimation 意大利工作稳定性对货币贫困的影响:因果小区域估计
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2596297
Katarzyna Reluga, Dehan Kong, Setareh Ranjbar, Nicola Salvati, Mark van der Laan
{"title":"The impact of job stability on monetary poverty in Italy: causal small area estimation","authors":"Katarzyna Reluga, Dehan Kong, Setareh Ranjbar, Nicola Salvati, Mark van der Laan","doi":"10.1080/01621459.2025.2596297","DOIUrl":"https://doi.org/10.1080/01621459.2025.2596297","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"362 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal Component Analysis for max-stable distributions 最大稳定分布的主成分分析
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-12-10 DOI: 10.1080/01621459.2025.2595732
Felix Reinbott, Anja Janßen
{"title":"Principal Component Analysis for max-stable distributions","authors":"Felix Reinbott, Anja Janßen","doi":"10.1080/01621459.2025.2595732","DOIUrl":"https://doi.org/10.1080/01621459.2025.2595732","url":null,"abstract":"","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"102 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Statistical Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1