首页 > 最新文献

Journal of the American Statistical Association最新文献

英文 中文
Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models 潜高斯过程模型的 Vecchia-Laplace 近似迭代法
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-09 DOI: 10.1080/01621459.2024.2410004
Pascal Kündig, Fabio Sigrist
Latent Gaussian process (GP) models are flexible probabilistic non-parametric function models. Vecchia approximations are accurate approximations for GPs to overcome computational bottlenecks for l...
潜在高斯过程(GP)模型是一种灵活的概率非参数函数模型。Vecchia 近似值是 GP 的精确近似值,可克服计算瓶颈,用于计算潜在高斯过程模型。
{"title":"Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models","authors":"Pascal Kündig, Fabio Sigrist","doi":"10.1080/01621459.2024.2410004","DOIUrl":"https://doi.org/10.1080/01621459.2024.2410004","url":null,"abstract":"Latent Gaussian process (GP) models are flexible probabilistic non-parametric function models. Vecchia approximations are accurate approximations for GPs to overcome computational bottlenecks for l...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"10 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Spatio-Temporal Cross-Covariance Functions under the Lagrangian Framework with Multiple Advections” 对 "具有多重对接的拉格朗日框架下的时空交叉协方差函数 "的更正
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-08 DOI: 10.1080/01621459.2024.2412190
Published in Journal of the American Statistical Association (Just accepted, 2024)
发表于《美国统计协会期刊》(刚刚接受,2024 年)
{"title":"Corrections to “Spatio-Temporal Cross-Covariance Functions under the Lagrangian Framework with Multiple Advections”","authors":"","doi":"10.1080/01621459.2024.2412190","DOIUrl":"https://doi.org/10.1080/01621459.2024.2412190","url":null,"abstract":"Published in Journal of the American Statistical Association (Just accepted, 2024)","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis 通过子空间因子分析从多个数据源推断协方差结构
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-07 DOI: 10.1080/01621459.2024.2408777
Noirrit Kiran Chandra, David B. Dunson, Jason Xu
Factor analysis provides a canonical framework for imposing lower-dimensional structure such as sparse covariance in high-dimensional data. High-dimensional data on the same set of variables are of...
因子分析为在高维数据中加入稀疏协方差等低维结构提供了一个规范框架。关于同一组变量的高维数据具有...
{"title":"Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis","authors":"Noirrit Kiran Chandra, David B. Dunson, Jason Xu","doi":"10.1080/01621459.2024.2408777","DOIUrl":"https://doi.org/10.1080/01621459.2024.2408777","url":null,"abstract":"Factor analysis provides a canonical framework for imposing lower-dimensional structure such as sparse covariance in high-dimensional data. High-dimensional data on the same set of variables are of...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks 瓦瑟斯坦生成式对抗网络潜空间的自适应学习
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-07 DOI: 10.1080/01621459.2024.2408778
Yixuan Qiu, Qingyi Gao, Xiao Wang
Generative models based on latent variables, such as generative adversarial networks (GANs) and variational auto-encoders (VAEs), have gained lots of interests due to their impressive performance i...
基于潜在变量的生成模型,如生成对抗网络(GANs)和变异自动编码器(VAEs),因其令人印象深刻的性能而受到广泛关注。
{"title":"Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks","authors":"Yixuan Qiu, Qingyi Gao, Xiao Wang","doi":"10.1080/01621459.2024.2408778","DOIUrl":"https://doi.org/10.1080/01621459.2024.2408778","url":null,"abstract":"Generative models based on latent variables, such as generative adversarial networks (GANs) and variational auto-encoders (VAEs), have gained lots of interests due to their impressive performance i...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"66 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Based Machine Learning 基于模型的机器学习
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-04 DOI: 10.1080/01621459.2024.2411074
Emanuela Furfaro
Published in Journal of the American Statistical Association (Just accepted, 2024)
发表于《美国统计协会期刊》(刚刚接受,2024 年)
{"title":"Model-Based Machine Learning","authors":"Emanuela Furfaro","doi":"10.1080/01621459.2024.2411074","DOIUrl":"https://doi.org/10.1080/01621459.2024.2411074","url":null,"abstract":"Published in Journal of the American Statistical Association (Just accepted, 2024)","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sparse Beta Regression Model for Network Analysis 用于网络分析的稀疏贝塔回归模型
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-04 DOI: 10.1080/01621459.2024.2411073
Stefan Stein, Rui Feng, Chenlei Leng
For statistical analysis of network data, the β -model has emerged as a useful tool, thanks to its flexibility in incorporating nodewise heterogeneity and theoretical tractability. To generalize th...
在对网络数据进行统计分析时,β 模型因其在纳入节点异质性方面的灵活性和理论上的可操作性而成为一种有用的工具。为了推广该模型,我们需要对其进行改进。
{"title":"A Sparse Beta Regression Model for Network Analysis","authors":"Stefan Stein, Rui Feng, Chenlei Leng","doi":"10.1080/01621459.2024.2411073","DOIUrl":"https://doi.org/10.1080/01621459.2024.2411073","url":null,"abstract":"For statistical analysis of network data, the β -model has emerged as a useful tool, thanks to its flexibility in incorporating nodewise heterogeneity and theoretical tractability. To generalize th...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"52 2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial modeling and future projection of extreme precipitation extents 极端降水范围的空间建模和未来预测
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-03 DOI: 10.1080/01621459.2024.2408045
Peng Zhong, Manuela Brunner, Thomas Opitz, Raphaël Huser
Extreme precipitation events with large spatial extents may have more severe impacts than localized events as they can lead to widespread flooding. It is debated how climate change may affect the s...
空间范围大的极端降水事件可能比局部事件的影响更严重,因为它们可能导致大范围的洪水。气候变化会如何影响洪水?
{"title":"Spatial modeling and future projection of extreme precipitation extents","authors":"Peng Zhong, Manuela Brunner, Thomas Opitz, Raphaël Huser","doi":"10.1080/01621459.2024.2408045","DOIUrl":"https://doi.org/10.1080/01621459.2024.2408045","url":null,"abstract":"Extreme precipitation events with large spatial extents may have more severe impacts than localized events as they can lead to widespread flooding. It is debated how climate change may affect the s...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of vaccine waning as a challenge effect 量化疫苗减弱的挑战效应
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-03 DOI: 10.1080/01621459.2024.2408776
Matias Janvin, Mats J. Stensrud
Knowing whether vaccine protection wanes over time is important for health policy and drug development. However, quantifying waning effects is difficult. A simple contrast of vaccine efficacy at tw...
了解疫苗的保护作用是否会随着时间的推移而减弱,对于卫生政策和药物开发非常重要。然而,量化减弱的效果却很困难。简单地对比两种疫苗在不同时间段的效力,可以帮助我们更好地了解疫苗的保护效果。
{"title":"Quantification of vaccine waning as a challenge effect","authors":"Matias Janvin, Mats J. Stensrud","doi":"10.1080/01621459.2024.2408776","DOIUrl":"https://doi.org/10.1080/01621459.2024.2408776","url":null,"abstract":"Knowing whether vaccine protection wanes over time is important for health policy and drug development. However, quantifying waning effects is difficult. A simple contrast of vaccine efficacy at tw...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"49 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Euclidean mirrors and dynamics in network time series 网络时间序列中的欧氏镜像和动态性
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-01 DOI: 10.1080/01621459.2024.2392912
Avanti Athreya, Zachary Lubberts, Youngser Park, Carey Priebe
Analyzing changes in network evolution is central to statistical network inference. We consider a dynamic network model in which each node has an associated time-varying low-dimensional latent vect...
分析网络演化的变化是统计网络推断的核心。我们考虑了一个动态网络模型,其中每个节点都有一个相关的时变低维潜在向量。
{"title":"Euclidean mirrors and dynamics in network time series","authors":"Avanti Athreya, Zachary Lubberts, Youngser Park, Carey Priebe","doi":"10.1080/01621459.2024.2392912","DOIUrl":"https://doi.org/10.1080/01621459.2024.2392912","url":null,"abstract":"Analyzing changes in network evolution is central to statistical network inference. We consider a dynamic network model in which each node has an associated time-varying low-dimensional latent vect...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"85 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Statistics for Data Science: Theory and Practice with R. 数据科学的空间统计学:使用 R 的理论与实践
IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-10-01 DOI: 10.1080/01621459.2024.2406581
Chae Young Lim
Published in Journal of the American Statistical Association (Just accepted, 2024)
发表于《美国统计协会期刊》(刚刚接受,2024 年)
{"title":"Spatial Statistics for Data Science: Theory and Practice with R.","authors":"Chae Young Lim","doi":"10.1080/01621459.2024.2406581","DOIUrl":"https://doi.org/10.1080/01621459.2024.2406581","url":null,"abstract":"Published in Journal of the American Statistical Association (Just accepted, 2024)","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"42 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Statistical Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1